Part Number Hot Search : 
C3063 C5181 038720 CD82C86H TC8600 SRE18 UF1006 BUX48A
Product Description
Full Text Search
 

To Download DA9022 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 1 of 142 ? 2017 dialog semiconductor g eneral d escription the da9021/22 family is a highly integrated pmic subsystem with supply domains to support a wide range of application processors, associated peripherals, and user interface functions. combining a switched - mode usb compatible charger, full power - path management, three bucks, five linear regulators and support for multiple sleep modes, the da9021 offers an energy - optimised solution suitable for portable handheld, wire less and, infotainment applications. da9021/22 comes in a 4 x 4 mm, 64 - bump, wlcsp package making it ideal for space constrained applications. the high - efficiency li - lon/polymer switching charger supports precise current/voltage charging as well as pre - ch arge and usb modes without processor interaction. during charging, the die temperature is thermally regulated enabling high - capacity batteries to be rapidly charged at currents up to 1.26 a with minimum thermal impact to space - constrained pcbs. da9021 off ers a merged buck configuration for a combined 1.6 a or DA9022 offers a higher voltage capability on one dc - dc buck converter which is ideal for peripherals and memory running up to 3.6 v . usb suspend mode operation is supported and, for robustness, the po wer input is protected against over - voltage conditions. the internally generated system power rail supports power scenarios such as instant - on with a full y discharged battery. the power efficiency and flexibility of the switching dc - dc bucks is maintained to generate the various supply domains. controlled by a programmable digital power manager, the eight user - programmable switched/linear regulators may be configured to meet the start - up sequence, voltage, and timing requirements for most applications. th e power manager includes supply - rail qualification and system reset management. for optimal processor energy - per - task performance, dynamic voltage scaling (dvs) is available on up to four supply domains. dialogs patented smartmirror? dynamic biasing is im plemented on all linear regulators. key f eatures switched usb charger with power path management three buck c onverters with dvc , 0.5 v to 3.6 v , up to 800 m a five p rogrammable ldos , high psrr, 1 % accuracy 32 khz rtc oscillato r an integrated 7 - channel general purpose adc 9 - bit gpio bus for enhanced w akeup and peripheral control hs2 - wire and 4 - wire control interfaces unique usb supply detection and charge current selection 64 wlcsp 4 x 4 mm , 0.5 mm pitch package a pplications personal media players smartphone handsets personal navigation devices consumer infotainment devices iot
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 2 of 142 ? 2017 dialog semiconductor contents general description ................................ ................................ ................................ ............................. 1 key features ................................ ................................ ................................ ................................ ......... 1 applications ................................ ................................ ................................ ................................ ......... 1 contents ................................ ................................ ................................ ................................ ............... 2 figures ................................ ................................ ................................ ................................ .................. 5 tables ................................ ................................ ................................ ................................ ................... 6 1 terms and definitions ................................ ................................ ................................ ................... 9 2 block diagram ................................ ................................ ................................ .............................. 10 3 generated supply domains ................................ ................................ ................................ ........ 11 4 pad description ................................ ................................ ................................ ........................... 12 5 absolute maximum ratings ................................ ................................ ................................ ........ 20 6 recommended operating conditions ................................ ................................ ........................ 21 7 current consumption ................................ ................................ ................................ .................. 21 8 electrical characteristics ................................ ................................ ................................ ............ 22 8.1 digital i/o characteristics ................................ ................................ ................................ .... 22 8.2 gpio characteristics ................................ ................................ ................................ ........... 23 8.3 power on reset characteristics ................................ ................................ ............................ 23 8.4 4 - wire control bus ................................ ................................ ................................ ................ 24 8.5 oscillator characteristics ................................ ................................ ................................ ..... 24 8.6 reference voltage generation and temperature supervision ................................ .............. 25 8.7 ldo voltage regulators ................................ ................................ ................................ ....... 25 8.7.1 ldo1 ................................ ................................ ................................ .................... 25 8.7.2 ldo3 ................................ ................................ ................................ .................... 26 8.7.3 ldo7 ................................ ................................ ................................ .................... 27 8.7.4 ldo9 ................................ ................................ ................................ .................... 28 8.7.5 ldo10 ................................ ................................ ................................ .................. 29 8.7.6 ldocore ................................ ................................ ................................ ........... 30 8.8 dc/dc buck converters ................................ ................................ ................................ ...... 31 8.8.1 buckcore ................................ ................................ ................................ ........ 31 8.8.2 buckpro ................................ ................................ ................................ ........... 32 8.8.3 buckperi ................................ ................................ ................................ .......... 34 8.8.4 buckmem ................................ ................................ ................................ .......... 35 8.9 battery charger ................................ ................................ ................................ .................... 37 8.9.1 ch arger buck ................................ ................................ ................................ ....... 37 8.9.2 voltage levels on vbat ................................ ................................ ....................... 38 8.9.3 charging modes ................................ ................................ ................................ .. 38 8.9.4 charger detection circuit ................................ ................................ ...................... 39 8.9.5 vbus charge control ................................ ................................ ........................... 39 8.9.6 charge timer ................................ ................................ ................................ ........ 39 8.9.7 dccc and active - diode ................................ ................................ ....................... 39 8.10 oscillator 40 8.11 reference voltage generation and temperature supervision ................................ .............. 40 9 real time clock and 32 khz oscillator ................................ ................................ ....................... 41
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 3 of 142 ? 2017 dialog semiconductor 9.1 32 khz oscillator ................................ ................................ ................................ .................. 41 9.2 rtc counter and alarm ................................ ................................ ................................ ....... 41 10 typical characteristics ................................ ................................ ................................ ................ 43 10.1 buck regulator performance ................................ ................................ ................................ 43 10.2 linear regulator performance ................................ ................................ .............................. 44 10.3 adc performance ................................ ................................ ................................ ............... 45 10.4 power path performance ................................ ................................ ................................ ..... 45 11 functional description ................................ ................................ ................................ ................ 46 11.1 power manager io ports ................................ ................................ ................................ ..... 46 11.2 on/off (nonkey) ................................ ................................ ................................ ................ 46 11.3 hardware reset (nshutdown, nonkey, gpio14 & gpio15) ................................ ....... 46 11.4 reset output (nreset) ................................ ................................ ................................ ...... 47 11 .5 system enable (sys_en) ................................ ................................ ................................ ... 47 11.6 power enable (pwr_en) ................................ ................................ ................................ ... 47 11.7 power1 enable (pwr1_en) ................................ ................................ ............................... 47 11.8 general purpose feedback signal 1 (gp_fb1: ext_wakeup/ready) ........................... 47 11.9 power domain status (pwr_up/gp_fb2) ................................ ................................ ......... 48 11.10 supply rail fault (nvdd_fault) ................................ ................................ ......................... 48 11.11 interrupt requ est (nirq) ................................ ................................ ................................ ...... 48 11.12 real time clock output (out_32k) ................................ ................................ ..................... 48 11.13 io_supply voltage (vdd_io) ................................ ................................ .............................. 48 12 control interfaces ................................ ................................ ................................ ........................ 49 12.1 power manager interface (4 - wire and 2 - wire control bus) ................................ .................. 49 12.2 4 - wire communication ................................ ................................ ................................ ......... 49 12 .3 2 - wire communication ................................ ................................ ................................ ......... 53 12.3.1 2 - wire control bus protocol ................................ ................................ ................... 53 12.3.2 alternative high speed 2 - wire interface ................................ ............................... 55 13 da9021 operating modes ................................ ................................ ................................ ........... 56 13.1 active mode ................................ ................................ ................................ ..................... 56 13.2 powerdown mode ................................ ................................ ................................ ......... 56 13.3 reset mode ................................ ................................ ................................ ...................... 56 13.4 no - power mode ................................ ................................ ................................ .............. 57 13.5 power commander mode ................................ ................................ ........................... 57 13.6 start up from no power mode ................................ ................................ ........................ 58 13.6.1 power - on - reset (npor) ................................ ................................ ..................... 58 13.6.2 application wakeup ................................ ................................ .............................. 59 13 .6.3 power supply sequencer ................................ ................................ ..................... 60 14 register page control ................................ ................................ ................................ ................. 65 14.1 register page 0 ................................ ................................ ................................ ................... 65 14.1.1 p ower manager control and monitoring ................................ ............................... 65 15 gpio extender ................................ ................................ ................................ ............................. 75 15.1 gpio control ................................ ................................ ................................ ....................... 76 16 power supply sequencer ................................ ................................ ................................ ............ 81 16 .1 power sequencer ................................ ................................ ................................ ................ 83 17 voltage regulators ................................ ................................ ................................ ....................... 86 17.1 da9021/22 core regulator ldocore ................................ ................................ ................ 87
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 4 of 142 ? 2017 dialog semiconductor 18 dc/dc buck converters ................................ ................................ ................................ .............. 88 18.1 converters buckcore, buckpro (da9021 only) and buckmem with dvc .............. 88 18.2 converter buckperi with otp programmable output voltage and bypass mode (DA9022 only) ................................ ................................ ................................ ..................... 90 18.3 power supplies ................................ ................................ ................................ .................... 91 19 programmable battery charger ................................ ................................ ................................ 103 19.1 high efficiency charger dc - dc buck converter ................................ ................................ 1 04 19.2 charger supply detection/vbus monitoring ................................ ................................ ..... 104 19.3 vbus overvoltage protection and usb suspend ................................ .............................. 105 19.4 battery pre - charge mode ................................ ................................ ................................ .. 106 19.5 fast linear - charge mode ................................ ................................ ................................ ... 107 19.6 thermal charge current control ................................ ................................ ......................... 107 19.7 dynamic charging current control (dccc) and active - diode ................................ ............ 108 19.8 programmable charge termination by time ................................ ................................ ....... 108 19.8.1 battery charger ................................ ................................ ................................ .. 109 20 monitoring adc and touch screen interface ................................ ................................ .......... 114 20.1 adc overview ................................ ................................ ................................ ................... 114 20.1.1 input mux ................................ ................................ ................................ .......... 114 20.1.2 adc ................................ ................................ ................................ ................... 114 20.2 manual conversion mode ................................ ................................ ........................ 114 20.3 automatic measurements scheduler ................................ ................................ ................. 115 20.3.1 a0: vddout low voltage nirq measurement mode ................................ ....... 115 20.3.2 a1: ich (and ich_bat average) measurement mode ................................ ..... 115 20.3.3 a2: tbat and battery temperature warning nirq measurement mode ........... 116 20.3.4 a4, a5: automatic measu rement and high/low threshold warning nirq mode . 116 20.3.5 a8: automatic measurement of internal temperature ................................ ........ 116 20.3.6 a3, a9: manual measurement vbat and vbbat ................................ ............. 116 20.4 fixed threshold comparator ................................ ................................ .............................. 116 20.4.1 led driver ................................ ................................ ................................ .......... 117 20.4.2 gp - adc ................................ ................................ ................................ ............. 118 20.4.3 rtc calendar and alarm ................................ ................................ .................... 122 20.5 register page 1 ................................ ................................ ................................ ................. 124 20.5.1 customer otp ................................ ................................ ................................ ... 125 21 register map ................................ ................................ ................................ .............................. 127 22 package information ................................ ................................ ................................ ................. 133 22.1 package outlines ................................ ................................ ................................ ............... 133 23 external component selection ................................ ................................ ................................ . 134 23.1 capacitor selection ................................ ................................ ................................ ............ 134 23.2 inductor selection ................................ ................................ ................................ .............. 135 23.3 resistors 135 23.4 external pass transistors and schottky diodes ................................ ................................ . 135 23.5 battery pack temperature sensor (ntc) ................................ ................................ ........... 135 23.6 crystal 136 24 layout guidelines ................................ ................................ ................................ ...................... 137 24.1 general recommendations ................................ ................................ ................................ 137 24.2 system supply and charger ................................ ................................ .............................. 137
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 5 of 142 ? 2017 dialog semiconductor 24.3 ldos and switched mode supplies ................................ ................................ ................... 137 24.4 crystal oscillator ................................ ................................ ................................ ................ 137 24.5 da9021 thermal connection, land pad and stencil design ................................ ................ 138 25 definitions ................................ ................................ ................................ ................................ .. 139 25.1 power dissipation and thermal design ................................ ................................ .............. 139 25.2 regulator parameters ................................ ................................ ................................ ....... 139 25.2.1 dropout voltage ................................ ................................ ................................ . 139 25.2.2 power supply rejection ................................ ................................ ....................... 140 25.2.3 line regulation ................................ ................................ ................................ ... 140 25.2.4 load regulation ................................ ................................ ................................ .. 140 26 ordering information ................................ ................................ ................................ ................ 141 26.1 additional applications information ................................ ................................ ................... 141 revision history ................................ ................................ ................................ ............................... 141 figures figure 1: block diagram ................................ ................................ ................................ ....................... 10 figure 2: pcb board da9021 pad arrangement (view from the top) ................................ .................. 12 figure 3: pcb board DA9022 pad arrangement (view from the top) ................................ .................. 13 figure 4: pad arrangement colour key ................................ ................................ ................................ 14 figure 5: 4 - wire control bus timing diagram ................................ ................................ ........................ 24 figure 6: schematics of the rtc oscillator and counter functionality ................................ ................. 42 figure 7: buckperi efficiency curves ................................ ................................ ............................... 43 figure 8: buckcore efficiency curves ................................ ................................ ............................. 43 figure 9: buckpro efficiency curves ................................ ................................ ................................ 43 figure 10: buckmem efficiency curves ................................ ................................ ............................. 43 figure 11: typical buck line transient ................................ ................................ ................................ .. 43 figure 12: typical buck load transient ................................ ................................ ................................ . 43 figure 13: typical ldo load regulation ................................ ................................ ............................... 44 figure 14: typical ldo drop - out voltage ................................ ................................ ............................ 44 figure 15: typical ldo line transient ................................ ................................ ................................ .. 44 figure 16: ldo load transient ................................ ................................ ................................ ............. 44 figure 17: typical ldo voltage vs temperature ................................ ................................ .................. 44 figure 18: adc dnl performance ................................ ................................ ................................ ...... 45 figure 19: adc inl performance ................................ ................................ ................................ ........ 45 figure 20 power path behaviour usb100 mode ................................ ................................ ................. 45 figure 21 power path behaviour usb500 mode ................................ ................................ ................. 45 figure 22: transitioning supply from usb 5 v (via vbus) to vbat ................................ ................... 45 figure 23: control ports and interface ................................ ................................ ................................ . 46 figure 24: schematic of 4 - wire and 2 - wire power mana ger bus ................................ ......................... 49 figure 25: 4 - wire host write and read timing (ncs_pol = 0, cpol = 0, cpha = 0) .................... 50 figure 26: 4 - wire host write and read timing (ncs_pol = 0, cpol = 0, cpha = 1) .................... 51 figure 27: 4 - wire host write and read timing (ncs_pol = 0, cpol = 1, cpha = 0) .................... 51 figure 28: 4 - wire host write and read timing (ncs_pol = 0, cpol = 1, cpha = 1) .................... 52 figure 29: timing of 2 - wire start and stop condition ................................ ................................ ... 53 figure 30: 2 - wire byte write (so/data line) ................................ ................................ ....................... 54 figure 31: examples of 2 - wire byte read (so/data line) ................................ ................................ ... 54 figure 32: 2 - wire page write (so/data line) ................................ ................................ ...................... 54 figure 33: 2 - wire repeat ed write (so/data line) ................................ ................................ ................ 54 figure 34: start - up from no - power to powerdown mode ................................ ......................... 59 figure 35: content of otp power sequencer register cell ................................ ................................ .. 61 figure 36: allocation of supplies (ids) into to the sequencer time slots ................................ ............. 62 figure 37: typical power - up timing ................................ ................................ ................................ ..... 81 figure 38: power mode transitions ................................ ................................ ................................ ...... 82
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 6 of 142 ? 2017 dialog semiconductor figure 39: smart mirror ? voltage regulator ................................ ................................ ........................ 86 figure 40: dc - dc buck converter ................................ ................................ ................................ ....... 88 figure 41: buckcore merged with buckpro ................................ ................................ ............... 90 figure 42: buckperi bypass mode ................................ ................................ ............................... 91 figure 43: charger block diagram ................................ ................................ ................................ ..... 104 figure 44: charger detection ................................ ................................ ................................ ............. 105 figure 45: dccc & active diode operation ................................ ................................ ....................... 108 figure 46: adc block diagram ................................ ................................ ................................ .......... 114 figure 47: adc sequence ................................ ................................ ................................ ................. 115 figure 48: da9021/22 package outline drawing ................................ ................................ ............... 133 figure 49: line regulation ................................ ................................ ................................ .................. 140 figure 50: load regulation ................................ ................................ ................................ ................. 140 tables table 1: regulator overview ................................ ................................ ................................ ................ 11 table 2: pin description for da9021 ................................ ................................ ................................ .... 14 table 3: pin description for DA9022 ................................ ................................ ................................ .... 17 table 4: pin type definition ................................ ................................ ................................ .................. 19 table 5: absolute maximum ratings ................................ ................................ ................................ .... 20 table 6: recommended operating conditions ................................ ................................ ..................... 21 table 7: current consumption ................................ ................................ ................................ ............. 21 table 8: digital i/o (vdd_ref > 2.8 v) ................................ ................................ .............................. 22 table 9: gpios ................................ ................................ ................................ ................................ .... 23 table 10: power on reset ................................ ................................ ................................ .................... 23 table 11: 4 - wire timing ................................ ................................ ................................ ........................ 24 tabl e 12: oscillator ................................ ................................ ................................ .............................. 24 table 13: reference voltage generation and temperature supervision ................................ .............. 25 table 14: ldo1 ................................ ................................ ................................ ................................ ... 25 table 15: ldo3 ................................ ................................ ................................ ................................ ... 26 table 16: ldo7 ................................ ................................ ................................ ................................ ... 27 table 17: ldo9 ................................ ................................ ................................ ................................ ... 28 table 18: ldo10 ................................ ................................ ................................ ................................ . 29 table 19: ldocore (t a = - 25 oc to +85 oc) ................................ ................................ ..................... 30 table 20: buckcore ................................ ................................ ................................ ........................ 31 table 21: buckpro (da9021 only) ................................ ................................ ................................ ... 32 table 22: buckperi (DA9022 only) ................................ ................................ ................................ .. 34 table 23: buckmem ................................ ................................ ................................ .......................... 35 table 24: battery charger ................................ ................................ ................................ .................... 37 ta ble 25: charger buck ................................ ................................ ................................ ....................... 37 table 26: voltage levels on vbat ................................ ................................ ................................ ....... 38 table 27: charging modes ................................ ................................ ................................ .................. 38 table 28: charger detection circuit ................................ ................................ ................................ ..... 39 table 29: vbus charge control ................................ ................................ ................................ ........... 39 table 30: charge timer ................................ ................................ ................................ ........................ 39 table 31: dccc and active - diode ................................ ................................ ................................ ....... 39 table 32: oscillator (t a = - 25 oc to +85 oc) ................................ ................................ ........................ 40 table 33: reference voltage generation and temperature supervision (t a = - 25 oc to +85 oc) ......... 40 table 34: 4 - wire clock configurations ................................ ................................ ................................ .. 50 table 35: 4 - wire interface summary ................................ ................................ ................................ .... 52 table 36: wakeup events ................................ ................................ ................................ .................... 60 table 37: power sequencer controlled actions ................................ ................................ ................... 61 table 38: register page control ................................ ................................ ................................ .......... 65 table 39: status_a ................................ ................................ ................................ .......................... 65 table 40: status_b ................................ ................................ ................................ .......................... 65 table 41: status_c ................................ ................................ ................................ .......................... 66 table 42: status_d ................................ ................................ ................................ .......................... 66 table 43: event_a ................................ ................................ ................................ ............................ 66 table 44: event_b ................................ ................................ ................................ ............................ 67
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 7 of 142 ? 2017 dialog semiconductor table 45: event_c ................................ ................................ ................................ ............................ 67 table 46: event_d ................................ ................................ ................................ ............................ 67 table 47: fault_log ................................ ................................ ................................ ........................ 68 table 48: irq_mask_a ................................ ................................ ................................ ...................... 68 table 49: irq_mask_b ................................ ................................ ................................ ...................... 68 table 50: irq_mask_c ................................ ................................ ................................ ..................... 69 table 51: irq_mask_d ................................ ................................ ................................ ..................... 69 table 52 : control_a ................................ ................................ ................................ ....................... 69 table 53: control_b ................................ ................................ ................................ ....................... 70 table 54: control_c ................................ ................................ ................................ ...................... 71 table 55: control_d ................................ ................................ ................................ ...................... 72 table 56 : pd_dis ................................ ................................ ................................ ................................ 72 table 57: interface ................................ ................................ ................................ ........................ 73 table 58: reset ................................ ................................ ................................ ................................ . 74 table 59: gpio0 to 1 ................................ ................................ ................................ ........................... 76 table 60: reserved ................................ ................................ ................................ ......................... 77 table 61: gpio8 to 9 ................................ ................................ ................................ ........................... 77 table 62: gpio10 to 11 ................................ ................................ ................................ ....................... 78 table 63: gpio12 to 13 ................................ ................................ ................................ ....................... 78 table 64: gpio14 to 15 ................................ ................................ ................................ ....................... 79 table 65: id 0 to 1 ................................ ................................ ................................ ............................... 83 table 66: id 2 to 3 ................................ ................................ ................................ ............................... 83 table 67: reserved ................................ ................................ ................................ ......................... 83 table 68: id 6 to 7 ................................ ................................ ................................ ............................... 83 table 69: id 8 to 9 ................................ ................................ ................................ ............................... 83 table 70 : id 10 to 11 ................................ ................................ ................................ ........................... 83 table 71: id 12 to 13 ................................ ................................ ................................ ........................... 84 table 72: id 14 to 15 ................................ ................................ ................................ ........................... 84 table 73: id 16 to 17 ................................ ................................ ................................ ........................... 84 table 74: id 18 to 19 ................................ ................................ ................................ ........................... 84 table 75: id 20 to 21 ................................ ................................ ................................ ........................... 84 table 76: seq status ................................ ................................ ................................ .......................... 84 table 77: seq_a ................................ ................................ ................................ ................................ . 84 table 78: seq_b ................................ ................................ ................................ ................................ . 85 table 79: se q timer ................................ ................................ ................................ ............................ 85 table 80: selection of buck current limit from coil parameters ................................ ........................... 91 table 81: buck a ................................ ................................ ................................ ................................ . 91 table 82: buck b ................................ ................................ ................................ ................................ . 92 table 83: bu ckcore ................................ ................................ ................................ ........................ 92 table 84: buckpro ................................ ................................ ................................ ........................... 93 table 85: buckmem ................................ ................................ ................................ .......................... 94 table 86: buckperi ................................ ................................ ................................ .......................... 95 table 87: ldo1 ................................ ................................ ................................ ................................ ... 96 table 88: rese rved ................................ ................................ ................................ ......................... 97 table 89: ldo3 ................................ ................................ ................................ ................................ ... 97 table 90: reserved ................................ ................................ ................................ ......................... 98 table 91: ldo7 ................................ ................................ ................................ ................................ ... 98 table 92: reserved ................................ ................................ ................................ ....................... 100 table 93: ldo9 ................................ ................................ ................................ ................................ . 100 table 94: ldo10 ................................ ................................ ................................ ............................... 100 table 95: supply ................................ ................................ ................................ ............................ 101 table 96: pulldown ................................ ................................ ................................ ...................... 102 table 97: thermal charge current control ................................ ................................ ......................... 107 table 98: chg_buck ................................ ................................ ................................ ....................... 109 table 99: wait_cont ................................ ................................ ................................ ..................... 109 table 100: iset ................................ ................................ ................................ ................................ . 110 table 101: bat_chg ................................ ................................ ................................ ........................ 111 table 10 2: chg_cont ................................ ................................ ................................ .................... 111 table 103: input_cont ................................ ................................ ................................ .................. 112
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 8 of 142 ? 2017 dialog semiconductor table 104: chg_time ................................ ................................ ................................ ...................... 113 table 105: r69 to r78 ................................ ................................ ................................ ...................... 116 table 106: led4_cont ................................ ................................ ................................ ................... 117 table 107: led5_cont ................................ ................................ ................................ ................... 117 table 108: adc_man ................................ ................................ ................................ ....................... 118 table 109: adc_cont ................................ ................................ ................................ ..................... 118 table 11 0: adc_res_l ................................ ................................ ................................ .................... 119 table 111: adc_res_h ................................ ................................ ................................ ................... 119 table 112: vdd_res ................................ ................................ ................................ ........................ 119 table 113: vdd_mon ................................ ................................ ................................ ....................... 119 table 114: ichg_av ................................ ................................ ................................ ......................... 119 table 11 5: ichg_thd ................................ ................................ ................................ ...................... 119 table 116: ichg_end ................................ ................................ ................................ ...................... 120 table 117: tbat_res ................................ ................................ ................................ ...................... 120 table 118: tbat_highp ................................ ................................ ................................ .................. 120 table 119: tbat_highn ................................ ................................ ................................ .................. 120 table 120: tbat_low ................................ ................................ ................................ ..................... 120 table 121: t_offset ................................ ................................ ................................ ...................... 120 table 122: adcin4_res ................................ ................................ ................................ .................. 121 table 123: auto4_high ................................ ................................ ................................ .................. 121 table 124: auto4_low ................................ ................................ ................................ .................. 121 table 125: adcin5_res ................................ ................................ ................................ .................. 121 table 126: auto5_high ................................ ................................ ................................ .................. 121 table 127: auto5_low ................................ ................................ ................................ .................. 121 table 128: r102, r103 ................................ ................................ ................................ ..................... 121 table 129: tjunc_res ................................ ................................ ................................ ................... 121 table 130: r105, r106 ................................ ................................ ................................ ..................... 122 table 131: count_s ................................ ................................ ................................ ....................... 122 table 132: count_mi ................................ ................................ ................................ ...................... 122 table 133: count_h ................................ ................................ ................................ ....................... 122 table 134: count_d ................................ ................................ ................................ ....................... 122 table 135: count_mo ................................ ................................ ................................ .................... 122 table 136: count_y ................................ ................................ ................................ ....................... 123 table 13 7: alarm_mi ................................ ................................ ................................ ...................... 123 table 138: alarm_h ................................ ................................ ................................ ........................ 123 table 139: alarm_d ................................ ................................ ................................ ........................ 123 table 140: alarm_mo ................................ ................................ ................................ .................... 123 table 141: alarm_y ................................ ................................ ................................ ........................ 123 table 14 2: second_a ................................ ................................ ................................ ..................... 124 table 143: second_b ................................ ................................ ................................ ..................... 124 table 144: second_c ................................ ................................ ................................ ..................... 124 table 145: second_d ................................ ................................ ................................ ..................... 124 table 14 6: page_con_p1 ................................ ................................ ................................ .............. 124 table 147: chip_id ................................ ................................ ................................ .......................... 124 table 148: config_id ................................ ................................ ................................ ..................... 125 table 149: otp_cont ................................ ................................ ................................ ..................... 125 table 150: osc_trim ................................ ................................ ................................ ...................... 126 table 15 1: register map ................................ ................................ ................................ ................... 127 table 152: recommended capacitor types ................................ ................................ ....................... 134 table 153: recommended inductor types ................................ ................................ ......................... 135 table 154: recommended resistor types ................................ ................................ .......................... 135 table 155: example fets: ................................ ................................ ................................ ................ 135 table 156: example ntc ................................ ................................ ................................ .................. 136 table 157: example crystal ................................ ................................ ................................ ............... 136
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 9 of 142 ? 2017 dialog semiconductor 1 terms and definitions adc analog to digital converter bcd binary coded decimal cc constant current cv constant voltage dccc dynamic charger current control dvc dynamic voltage control dvs dynamic voltage scaling esd electrostatic discharge esr equivalent series resistance gnd ground gsm global system for mobile c ommunication iot internet of things irq interrupt request ldo low dropout voltage regulator led light emitting diode ntc negative temperature coefficient otp one time programmable ov overvoltage pcb printed circuit board pfm pulse frequency modulation pmi c power management integrated circuit psrr power supply rejection ratio pwm pulse width modulation rtc real time clock tdma time division multiple access trc trimming release code usb universal serial bus wlcsp wafer level chip scale package
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 10 of 142 ? 2017 dialog semiconductor 2 block d iagram figure 1 : block diagram v d d _ i o m u l t i p l e x e d g p i o e x t e n d e r / a d c i n 5 / a d c i n 4 p i n C m u l t i p l e x w i t h g p - a d c / c o n t r o l h s / i 2 c / p w r _ e n / n v d d _ f a u l t / p w r _ e n 1 / s y s _ e n g p i o _ f / g p _ f b 1 v d d c o r e p o w e r m a n a g e r o n / o f f c o n t r o l r e s e t g e n e r a t i o n o t p p r o g r a m m a b l e w a k e - u p a n d s h u t d o w n s e q u e n c i n g c o n t r o l s y s t e m m o n i t o r i n t e r r u p t h a n d l e r t e m p s e n s o r v o l t a g e s u p e r - v i s i o n r t c 3 2 k h z o s c r t c d i g i t a l r e f v o l t a g e b i a s i n g c i r c u i t i n t e r n a l o s c l d o b ( d v c ) 1 . 7 2 5 - 3 . 3 v d i g c t r l 2 . 2 u f l d o c ( l n ) 1 . 2 - 3 . 6 v d i g c t r l 2 . 2 u f l d 0 3 l d o 7 v d d o u t / v b u c k x v d d c o r e 1 0 0 n f d i g c t r l 3 2 k h z c r y s t a l s y s _ e n / g p i o _ c p w r _ e n / g p i o _ d p w r 1 _ e n / g p i o _ e g p _ f b 1 / g p i o _ f n r e s e t n s h u t d o w n n i r q n o n k e y / k e e p _ a c t n v d d _ f a u l t / g p i o _ g 2 0 0 k o v r e f i r e f v d d c o r e t p p w r _ u p / g p _ f b 2 / c l k / d a t a o t p m e m o r y l d o a ( l n ) 0 . 6 - 1 . 8 v d i g c t r l 1 . 0 u f l d o 1 v d d o u t / v b u c k x / v d d _ r e f l d o e ( l n ) 1 . 2 C 3 . 6 v d i g c t r l 2 . 2 u f l d o 1 0 v d d c o r e l d o d ( l n ) 1 . 2 5 - 3 . 6 5 v d i g c t r l 1 . 0 u f 1 0 0 n f 2 . 2 u f d i g c t r l l d o c o r e 2 . 5 v l d o 9 v d d o u t / v b u c k x v d d _ r e f o u t _ 3 2 k d a 9 0 2 1 / d a 9 0 2 2 4 . 7 u h b u c k p r o d a 9 0 2 1 o n l y d v s d a c 4 . 7 u h b u c k c o r e d v s d a c 2 2 u f 2 2 u f 4 . 7 u h b u c k m e m v d d _ a d v s d a c 1 0 u f g e n e r a l p u r p o s e 1 0 b i t a d c t b a t v b u s s e l e c t o r o v - p r o t e c t i o n n t c v d d o u t v b a t a c t i v e d i o d e c h a r g e r v d d c o r e 3 0 u f d i s t r i b u t e d 4 . 7 u h p o w e r p a t h p l u s a d c i n 4 / g p i o _ a v b u s d i g c t r l d i g c t r l v b u s _ p r o t v c e n t e r v s s g p i o _ e g p i o _ g g p i o _ h g p i o _ i d i g c t r l h s 2 - w i r e i n t e r f a c e d a t a / g p i o _ h c l k / g p i o _ i / a d c i n 6 n c s s i s k s o 4 - w i r e / 2 - w i r e i n t e r f a c e g p i o _ d g p i o _ c g p i o _ b g p i o _ a a d c i n 5 / g p i o _ b b u c k m e m b u c k p r o v b u c k c o r e v d d _ b _ c 4 . 7 u h b u c k p e r i d a 9 0 2 2 o n l y v b u c k p e r i 1 0 u f
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 11 of 142 ? 2017 dialog semiconductor 3 generated supply domains t he default voltages in table 1 indicate the voltages obtained from an un - programmed device. table 1 : regulator overview regulator supplied voltage supplied max. c urrent (ma) external component note s buckcore 0.5 v to 2.075 v 3 % accuracy default 1.8 v 700 2.2 h to 4.7 h dvc, 2 mhz , 25 mv steps , dvc ra mp with controlled slew rate; pull - down resistor switch off 800 between dvc transitions buckpro da9021 only 0.5 v to 2.075 v 3 % accuracy default 1.2 v 700 2.2 h to 4.7 h dvc, 2 mhz, 25 mv steps, dvc ramp with controlled slew rate, pull - down resistor switch off 800 between dvc transitions buckperi DA9022 only 1.8 v to 3.6 v 3 % accuracy default 3.3 v 650 2.2 h to 4.7 h 2 mhz, 50 or 100 mv steps at low input voltages the buck switches to a follower mode (100 % duty cycle), second output with sequencer controllable switch 750 < 2.1 v buckmem 0.9 5 v to 2. 5 2 5 v 3 % accuracy default 2.0 v 650 2.2 h to 4.7 h dvc, 2 mhz, 25 mv steps , dvc ra mp with controlled slew rate, pull - down resistor switch off 750 < 2.075 v and between dvc transitions ldo1 0.6 v to 1.8 v 3 % accuracy default 1.2 v 4 0 1.0 f high pssr, low noise ldo, 50 mv steps , pull - down resistor switch off ldo3 1.725 v to 3.3 v 3 % accuracy default 2.85 v 200 2.2 f dvc, digital ldo, 25 mv steps , dvc with controlled slew rate ldo7 1.2 v to 3.6 v 3 % accuracy default 3.1 v 2 00 2.2 f h igh psrr, low noise, 50 mv steps ldo9 1.2 5 v to 3.6 v 1 % accuracy default 2.5 v 1 00 1.0 f h igh psrr, low noise, 50 mv steps , otp trimmed , optional hardware control, common supply with ldoe ldo10 1.2 v to 3.6 v 3 % accuracy default 1 .8 v 250 2.2 f h igh psrr, low noise, 50 mv steps , common supply with ldod ldocore 2. 5 v 2 % accuracy 4 100 nf not for external use
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 12 of 142 ? 2017 dialog semiconductor 4 p ad description figure 2 : pcb board da9021 pad arrangement (view from the top)
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 13 of 142 ? 2017 dialog semiconductor figure 3 : pcb board DA9022 pad arrangement (view from the top)
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 14 of 142 ? 2017 dialog semiconductor figure 4 : pad arrangement colour key table 2 : pin d escription for da9021 pin no. pin name type ( table 4 ) description power manager e2 nonkey di o n / o ff key with optional long press shutdown b3 sys_en di/dio hardware enable of power domain system/gpio_8 b4 pwr_en di/dio hardware enable of power domain power/gpio_9 f5 pwr1_en di/dio hardware enable of power domain power1/gpio_10 with high power output and blinking feature, input for power sequencer wait id c4 nshutdown di active low input from switch or error indication line from host to i nitiate shutdown c2 nreset do active low reset towards host b6 gp_fb1 do/dio status indication towards host for a valid w akeup event (ext_wakeup) or indicator for ongoing power mode transition (ready) /gpio_12, enables hardware control of ldo9 g2 nirq do active low irq line towards host c3 nvdd_fault do/dio active low indication for low supply voltage/gpio_13 f3 pwr_up do/do sequencer status indicator: all power ids powered up (pwr_up) or programmable level controlled from the power sequencer (gp_fb2) g6 vdd_io ps s upply i/o voltage rail
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 15 of 142 ? 2017 dialog semiconductor pin no. pin name type ( table 4 ) description g5 tp dio test pin, enables power commander boot mode 4 - /2 - wire interfaces g3 so dio 4 - wire d ata output or 2 - wire data h3 si di 4 - wire data input h4 sk di 4 - wire /2 - wire clock h4 ncs di 4 - wire chip select h6 data dio hs - 2 - wire data/gpio_14 (enables reset if long press in parallel with gpi15) with high - power output and pwm led control h7 clk di hs - 2 - wire clock/gpio_15 (enables reset if long press in parallel with gpi14) with high - power output and pwm led control voltage regulators d8 vldo1 ao output v oltage from ldo1 e7 vdd_ldo1 ps supply voltage for ldo1 e8 vldo3 ao output voltage from ldo3 f7 vdd_ldo3 ps supply voltage for ldo3 f8 vldo7 ao output voltage from ldo7 f6 vdd_ldo7 ps supply voltage for ldo7 g8 vldo9 ao output voltage from ldo9 h8 vldo10 ao output voltage from ldo10 g7 vdd_ldo9_10 ps supply voltage for ldo9 and ldo10 d7 vddcore ao supply for internal circuitry e6 vdd_ref ao switched supply from vbat or vbus dc - dc b uck converters f2 vbuckcore ai sense node for dvc dc - dc buckcore f1 swbuckcore ao switching node for buckcore to be connected to swbuckpro for b uck merge b1 vbuckpro ai sense node for dvc dc - dc buckpro c1 swbuckpro ao switching node for buckpro to be connected to swbuckcore for b uck merge d2 vbuckmem ai sense node for dvc dc - dc buckmem g1 swbuckmem ao switching node for buckmem d1 vdd_cor_pro ps supply voltage for buckcore and buckpro t o be connected to vddout e1 vdd_cor_pro ps supply voltage for buckcore and buckpro t o be connected to vddout h1 vdd_mem ps supply voltage for buckmem t o be connected to vddout
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 16 of 142 ? 2017 dialog semiconductor pin no. pin name type ( table 4 ) description reference voltage generation a8 vref aio reference voltage output decouple with 100 nf b7 iref ao connection for bias setting configure with high precision 200 k? resistor internal oscillator c8 xin aio 32 khz c rystal connection adjust with 10 pf b8 xout aio 32 khz c rystal connection adjust with 10 pf h2 out_32k do 32 khz o scillator buffer output charger c7 vbus_sel ao control for external over voltage protection and input selection of vbus to be connected to gate of pfet a6 vbus_prot ps overvoltage protected vbus charger input c6 vbus ps usb or wall charger input a7 vcenter ps protected input for switching charger (decouple with 10 f) a5 vsw ps switching node for charger b uck b5 vsw ps switching node for charger b uck a3 vddout ps system power supply output a4 vddout ps system power supply output b2 ad_cont ao active diode controller output to be connected to gate of pfet (leave unconnected, if not used) a1 vbat ps connection to main battery a2 vbat ps connection to main battery general purpose adc g4 tbat aio connection to battery ntc resistor c5 adcin4 ai/dio connection to gp adc auto channel 4 with threshold irq and resistor measurement option/gpio_0 d6 adcin5 ai/dio connection to gp adc channel 5 with 1.2 v hardware comparator irq/gpio_1, enables hardware control of ldo4 vss d5 gnd vss_quiet vss_ldo e5 gnd vss_quiet vss_io d3 gnd vss_noisy vss_bp_bp d4 gnd vss_noisy vss e3 gnd vss_noisy vss_bc_bm e4 gnd vss_noisy vss f4 gnd vss vss_bc_bm
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 17 of 142 ? 2017 dialog semiconductor table 3 : pin description for DA9022 pin no. pin name type ( table 4 ) description power manager e2 nonkey di on/off key with optional long press shutdown b3 sys_en di/dio hardware enable of power domain system/gpio_8 b4 pwr_en di/dio hardware enable of power domain power/gpio_9 f5 pwr1_en di/dio hardware enable of power domain power1/gpio_10 with high - power output and blinking feature, input for power sequencer wait id c4 nshutdown di active low input from switch or error indication line from host to initiate shutdown c2 nreset do active low reset towards host b6 gp_fb1 do/dio status indication towards host for a valid w akeup event (ext_wakeup) or indicator for ongoing power mode transition (ready) /gpio_12, enables hardware control of ldo9 g2 nirq do active low irq line towards host c3 nvdd_fault do/dio active low indication for low supply voltage/gpio_13 f3 pwr_up do/do sequencer status indicator: all power ids powered up (pwr_up) or programmable level controlled from the power sequencer (gp_fb2) g6 vdd_io ps s upply i/o voltage rail g5 tp dio test pin, enables power commander boot mode 4 - /2 - wire interfaces g3 so dio 4 - wire data output or 2 - wire data h3 si di 4 - wire data input h4 sk di 4 - wire /2 - wire clock h4 ncs di 4 - wire chip select h6 data dio hs - 2 - wire data/gpio_14 (enables reset if long press in parallel with gpi15) with high - power output and pwm led control h7 clk di hs - 2 - wire clock/gpio_15 (enables reset if long press in parallel with gpi14) with high - power output and pwm led contr ol voltage regulators d8 vldo1 ao output v oltage from ldo1 e7 vdd_ldo1 ps supply voltage for ldo1 e8 vldo3 ao output voltage from ldo3 f7 vdd_ldo3 ps supply voltage for ldo3 f8 vldo7 ao output voltage from ldo7 f6 vdd_ldo7 ps supply voltage for ldo7 g8 vldo9 ao output voltage from ldo9 h8 vldo10 ao output voltage from ldo10 g7 vdd_ldo9_10 ps supply voltage for ldo9 and ldo10 d7 vddcore ao supply for internal circuitry e6 vdd_ref ao switched supply from vbat or vbus
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 18 of 142 ? 2017 dialog semiconductor pin no. pin name type ( table 4 ) description dc - dc buck converters f2 vbuckcore ai sense node for dvc dc - dc buckcore f1 swbuckcore ao switching node for buckcore to be connected to swbuckperi for buck merge b1 vbuckperi ai sense node for dvc dc - dc vbuckperi c1 swvbuckperi ao switching node for buckperi to be connected to swbuckcore for buck merge d2 vbuckmem ai sense node for dvc dc - dc buckmem g1 swbuckmem ao switching node for buckmem d1 vdd_peri ps supply voltage for buckperi to be connected to vddout e1 vdd_cor ps supply voltage for buckcore to be connected to vddout h1 vdd_mem ps supply voltage for buckmem to be connected to vddout reference voltage generation a8 vref aio reference voltage output decouple with 100 nf b7 iref ao connection for bias setting configure with high precision 200 k? resistor internal oscillator c8 xin aio 32 khz crystal connection adjust with 10 pf b8 xout aio 32 khz crystal connection a djust with 10 pf h2 out_32k do 32 khz os cillator buffer output charger c7 vbus_sel ao control for external overvoltage protection and input selection of vbus to be connected to gate of pfet a6 vbus_prot ps overvoltage protected vbus charger input c6 vbus ps usb or wall charger input a7 vcenter ps protected input for switching charger (decouple with 10 f) a5 vsw ps switching node for charger buck b5 vsw ps switching node for charger buck a3 vddout ps system power supply output a4 vddout ps system power supply output b2 ad_cont ao active diode controller output to be connected to gate of pfet (leave unconnected, if not used) a1 vbat ps connection to main battery a2 vbat ps connection to main battery general purpose adc g4 tbat aio connection to battery ntc resistor
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 19 of 142 ? 2017 dialog semiconductor pin no. pin name type ( table 4 ) description c5 adcin4 ai/dio connection to gp adc auto channel 4 with threshold irq and resistor measurement option/gpio_0 d6 adcin5 ai/dio connection to gp adc channel 5 with 1.2 v hardware comparator irq/gpio_1, enables hardware control of ldo4 vss d5 gnd vss_ldo e5 gnd vss_io d3 gnd vss_bp_bp d4 gnd vss e3 gnd vss_bc_bm e4 gnd vss f4 gnd vss_bc_bm table 4 : pin t ype d efinition pin t ype description pin t ype description di digital input ai analog input do digital output ao analog output dio digital input/output aio analog input/output diod digital input/output o pen drain bp backdrive protection pu fixed p ull - u p r esistor spu switchable p ull - u p r esistor pd fixed p ull - d own r esistor spd switchable p ull - d own r esistor
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 20 of 142 ? 2017 dialog semiconductor 5 absolute maximum ratings the maximum continuous charger voltage must be less than 5.5 v . t he overvoltage protection ( ovp ) circuit will help protect against transients above this level minimising effects on operation lifetime. vddout must not be driven from an external supply if the charger buck is used. table 5 : absolute maximum ratings parameter symbol conditions ( note 1 ) min max unit storage temperature - 40 +95 c operating temperature t a (max) - 25 +85 c power supply input vbat, vbus_prot , vddout , vdd _ ref - 0.3 5.5 v supply voltage charger vbus - 0.3 12 v supply voltage b uck input pins vddout - 0.3 v vddout + 0.3 v 5 v m ax . v supply voltage all pins except listed above - 0.3 vddout + 0.3 v 5 v m ax . v maximum power dissipation 1.86 w package thermal resistance no te 2 21.5 k/w esd susceptibility human body model 2 kv note 1 stre sses beyond those listed under a bsolute m aximum r atings may cause permanent damage to the device. these are stress ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification are not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. note 2 jedec 6 layer board, still air, influenced by pcb technology and layout . the numbers of supplies that can be used at the same time at maximum dissipation power is limited by the thermal resistance of the package and the pcb layout .
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 21 of 142 ? 2017 dialog semiconductor 6 recommended operating conditions all voltages are referenced to vss unless otherwise stated. currents flowing into da9021/22 are deemed positive, currents flowing out are deemed negative. all parameters are valid over the recommended temperature range and power supply range unless otherwise noted. please note that the power dissipation must be limited to avoid overheating of da9021/22 . the maximum power dissipation should not be reached with maximum ambient temperature. table 6 : recommended operating conditions parameter symbol conditions min typ max unit operating temperature t a - 25 +70 c supply voltage v bat 0 4.4 v supply voltage charger v bus 0 5.5 v supply voltage io v dd_io 1.2 3.6 note 1 v note 1 v dd _ io must not exceed v ddout . 7 current consumption table 7 : current consumption operating mode conditions ( t a = 25 c) min typ max unit no - power detection circuits running, oscillator off 15 a reset v dd _ ref > 2.2 v, b ucks and ldos off ( except ldocore), rtc unit on 45 a powerdown ( s tandby) v dd _ ref > 2.8 v, supplies off ( except ldocore), all blocks in powerdown mode, rtc unit on 45 a powerdown ( h ibernate) buckcore, ldocore, enabled, rtc and gpio on 155 note 1 a active all supplies, gpio, rtc and gpadc on 375 a note 1 enabled buck s are set to forced sleep mode setting 00
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 22 of 142 ? 2017 dialog semiconductor 8 electrical characteristics 8.1 digital i/o characteristics table 8 : digital i/o ( v dd _ ref > 2.8 v) parameter symbol conditions min typ max unit gpi0 C gpi15, nonkey, nshutdown sys_en, pwr_en, pwr1_en, clk, data, input high voltage vih vddcore mode vdd_io mode 1. 0 0. 7*vdd_io vddout v gpi0 C gpi15, nonkey, nshutdown sys_en, pwr_en, pwr1_en clk, data, input low voltage vil vddcore mode vdd_io mode 0.4 0.3*vdd_io v sk, ncs, si input high voltage vil vddcore mode vdd_io mode 0.7*vddcore 0.7*vdd_io vddout v sk, ncs, si input low voltage vih vddcore mode vdd_io mode - 0.3 0.3*vdd_io v gpo0 C gpo15, nvdd_fault, so nreset, nirq, pwr_up, gp_fb2, out_32k, output high voltage vih vdd_io mode 0.8*vdd_io gpo0 C gpo15,data, so, nreset, nirq, (open drain mode) output high voltage vil vdd_io mode v gpo0 C gpo15,data, so, nvdd_fault, nreset nirq, pwr_up, gp_fb2, out_32k output low voltage voh @1 ma 0 open drain vddout v
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 23 of 142 ? 2017 dialog semiconductor 8.2 gpio characteristics table 9 : gpio s parameter conditions min typ max unit sink current capability gpo 14, 15 v gpio = 0.1 v 30 ma sink current capability gpo 10, v gpio = 0.5 v 15 ma source current capability gpo 10, 14,15 v gpio = 0.8 * v dd_i o - 4 note 1 ma sink current capability gpo 0 to 9, 12 to 13 v gpio = 0.3 v 1 ma source current capability gpo 0 to 9, 12 to 13 v gpio = 0.8 * v dd_i o - 1 note 2 ma gpo pull - up resistor = 1.5 v v dd_i o = 1.8 v = 3.3 v 100 60 25 180 120 40 340 175 60 k ? note 1 for v supply < 1.5 v the source current for min 0.8 * v dd is limited to 0.8 ma note 2 for v supply < 1.5 v the source current for min 0.8 * v dd is limited to 0.5 ma 8.3 power on reset characteristics table 10 : power on reset parameter symbol min typ max unit deep discharge lockout lower threshold v por_lower 2.0 v deep discharge lockout upper threshold v por_upper 2.3 v under voltage lower threshold v dd_fault_lower 2.4 2.9 3.15 v u nder voltage lower threshold accuracy v dd_fault_lower _ a ccuracy 2 % under voltage upper threshold v dd_fault_upper v dd_fault_lower + 0.15 v charger buck under voltage v ddout_min 3.35 3.40 3.45 v
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 24 of 142 ? 2017 dialog semiconductor 8.4 4 - wire control bus figure 5 : 4 - wire control bus timing diagram note t he above timing is valid for active low and high cs table 11 : 4 - wire timing parameter symbol label in figure 5 min typ max unit cycle time t c 1 70 ns enable lead time t css 2, from cs active to first sk edge 20 ns enable lag time t scs 3, from last sk edge to cs idle 20 ns clock low time t cl 4 0.4 * t c ns clock high time t ch 5 0.4 * t c ns data i n setup time t sis 6 5 ns data i n hold time t sih 7 5 ns data o ut valid time t sov 8 22 ns data o ut hold time t soh 9 6 ns data access time t h 10 22 ns 8.5 oscillator characteristics table 12 : oscillator parameter symbol condition min typ max unit internal oscillator frequency before trimming 1.4 2.0 2.6 mhz after trimming 1.9 2.1 1 2 4 5 8 9 1 1 3 a 6 a 5 a 4 b i t 7 r / w b i t 1 l s b l s b b i t 1 a d d r e s s r / w d a t a s o s i s k n c s 7 6
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 25 of 142 ? 2017 dialog semiconductor 8.6 reference voltage generation and temperature supervision table 13 : reference voltage generation and temperature supervision parameter symbol conditions min typ max unit reference voltage v ref pin - 1.25 % 1.2 +1 % v vref decoupling capacitor 100 nf reference c urrent resistor iref pin - 1 % 200 +1% k? thermal shutdown t over 125 140 155 oc charge current reduction t chargel ow 75 90 115 oc charge suspend t chargesuspend 105 120 135 oc hysteresis 10 oc 8.7 ldo v oltage r egulators 8.7.1 ldo1 table 14 : ldo1 parameter symbol conditions min typ max unit input voltage v dd (power stage, if supplied from buck) 2.0 ( 1.5) v dd _ out + 0.3 v 5 v max. v output voltage v ld01 i out = i max 0.6 note 1 1.8 v output accuracy i out = i max - 3 note 2 +3 % stabili s ation capacitor c out i ncluding voltage and temperature coefficient @ configured v ld01 - 55 % 1.0 +35 % f esr of capacitor f > 1 mhz 0.1 ? maximum output current i max v dd 1.8 v 40 note 3 ma short circuit current i short 80 ma dropout voltage v dropout v dd > 2.15 v i out = i max (v dd = 2.0 v i out = 0.4 * i max or v dd = 1.5 v i out = 0.25 * i max ) 200 100 350 150 mv static line regulation v s line v dd = 3.0 v to 5.0 v i out = i max 5 20 mv static load regulation v s load i out = 1 ma to i max 5 20 mv line transient response v tr line v dd = 3.0 v to 3.6 v i out = i max t r = t f = 10 s 5 20 mv load transient response v tr load v dd = 3.6 v i out = 1 ma to i max t r = t f = 1 s 15 50 mv psrr psrr f = 10 hz to 10 khz v dd = 3.6 v 50 60 db
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 26 of 142 ? 2017 dialog semiconductor parameter symbol conditions min typ max unit output noise n f = 10 hz to 100 khz v dd = 3.6 v i out = 5 ma to i max 80 vrms quiescent current in on mode i q on note 4 8 + 1.25 % of i out a quiescent current in off mode i q off 1 a turn on time t on 10 % to 90 % 300 s turn off time t off 90 % to 10 % 10 ms pull down resistance in off mode r off can be switched off via ld01_pd_dis 100 ? note 1 programmable in 50 mv voltage steps, maximum output voltage is determined by v dd - dropout voltage. note 2 sourced from ldocore band gap . note 3 max. current is 10 ma if supplied from v dd _ ref . note 4 i nternal regulator current flowing to ground . 8.7.2 ldo3 table 15 : ldo3 parameter symbol conditions min typ max unit input voltage v dd (if supplied from buck) 2.8 (1.9) v dd _ out + 0.3 v 5 v m ax v output voltage v ld03 i out = i max 1.725 note 1 3.3 v output accuracy i out = i max - 3 +3 % stabili s ation capacitor c out (including voltage and temperature coefficient @ configured vld03) - 55 % 2.2 +35 % ? f esr of capacitor f > 1mhz 0.1 ? ? maximum output current i max 200 ma short circuit current i short 400 ma dropout voltage v dropout i out = i max (for v dd = 1.9 v i out = i max *2/3) 100 150 mv static line regulation v s line v dd = 3.0 v to 5.0 v i out = i max 5 20 mv static load regulation v s load i out = 1 ma to i max 5 20 mv line transient response v tr line v dd = 3.0 v to 3.6 v i out = i max t r = t f = 10 s 5 20 mv load transient response v tr load v dd = 3.6 v i out = 1 ma to i max t r = t f = 1 s 20 50 mv
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 27 of 142 ? 2017 dialog semiconductor parameter symbol conditions min typ max unit psrr psrr f = 10 hz to 10 khz v dd = 3.6 v 40 60 db quiescent current in on mode i q on note 2 8 +0.3 % of i out a quiescent current in off mode i q off 1 a turn on time t on 10 % to 90 % 300 s turn off time t off 90 % to 10 % 10 ms pull down resistance in off mode r off 100 ? note 1 programmable in 50 mv voltage steps, maximum output voltage is determined by v dd C v d rop o ut . note 2 internal regulator current flowing to ground 8.7.3 ldo7 table 16 : ldo7 parameter symbol conditions min typ max unit input voltage v dd (if supplied from buck) 2.8 (1.5) v dd _ out + 0.3 v 5 v max v output voltage v ld07 i out = i max 1.2 note 1 v output accuracy i out = i max - 3 +3 % stabili s ation capacitor c out (including voltage and temperature coefficient @ configured output voltage ) - 55 % 2.2 +35 % ? f esr of capacitor f > 1 mhz 0.1 ? ? maximum output current i max v dd 1.8 v 200 ma short circuit current i short 400 ma dropout voltage v dropout i out = i max (for v dd = 1.5 v i out = i max /3) 100 150 mv static line regulation v s line v dd = 3.0 v to 5.0 v i out = i max 5 20 mv static load regulation v s load i out = 1 ma to i max 5 20 mv line transient response v tr line vdd = 3.0 v to 3.6 v i out = i max t r = t f = 10 s 5 20 mv load transient response v tr load vdd = 3.6 v i out = 1 ma to i max t r = t f = 1 s 20 50 mv
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 28 of 142 ? 2017 dialog semiconductor parameter symbol conditions min typ max unit psrr psrr f = 10 hz to 10 khz v dd = 3.6 v i out = i max /2 60 70 db output noise n f = 10 hz to 100 khz vdd = 3.6 v i out = 5 ma to i max 80 vrms quiescent current in on mode i q on note 2 8 +0.4 % of i out a quiescent current in off mode i q off 1 a turn on time t on 10 % to 90 % 600 s turn off time t off 90 % to 10 % 10 ms pull down resistance in off mode r off 100 ? ? note 1 programmable in 50 mv voltage steps, maximum output voltage is determined by v dd C v dropout . note 2 internal regulator current flowing to ground 8.7.4 ldo9 table 17 : ldo9 parameter symbol conditions min typ max unit input voltage v dd (if supplied from buck) 2.8 (1.5) v dd _ out + 0.3 v 5 v max v output voltage v ld09 i out = i max 1.25 note 1 3.6 v output accuracy i out = i max - 1 +1 % stabili s ation capacitor c out (including voltage and temperature coefficient @ configured vld09) - 55 % 1.0 +35 % ? f esr of capacitor f > 1 mhz 0.1 ? ? maximum output current i max v dd 1.8 v 100 ma short circuit current i short 200 ma dropout voltage v dropout i out = i max (for v dd = 1.5 v i out = i max /3 ) 100 150 mv static line regulation v s line v dd = 3.0 v to 5.0 v i ou t = i max 5 20 mv static load regulation v s load i out = 1 ma to i max 5 20 mv line transient response v tr line v dd = 3.0 v to 3.6 v i out = i max t r = t f = 10 s 5 20 mv load transient response v tr load v dd = 3.6 v i out = 1 ma to i max t r = t f = 1 s 15 50 mv
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 29 of 142 ? 2017 dialog semiconductor parameter symbol conditions min typ max unit psrr psrr f = 10 hz to 10 khz v dd = 3.6 v i out = i max /2 60 70 db output noise n f = 10 hz to 100 khz v dd = 3.6 v i out = 5 ma to i max 80 vrm s quiescent current in on mode i q on note 2 8 +0.7 % of i out a quiescent current in off mode i q off 1 a turn on time t on 10 % to 90 % 200 s turn off time t off 90 % to 10 % 10 ms pull down resistance in off mode r off 100 ? note 1 programmable in 50 mv voltage steps, maximum output voltage is determined by v dd - v dropout . note 2 internal regulator current flowing to ground . 8.7.5 ldo10 table 18 : ldo10 parameter symbol conditions min typ max unit input voltage v dd (if supplied from buck) 2.8 (1.5) v dd _ out + 0.3 v 5 v m a x v output voltage v ld010 i out = i max 1.2 note 1 3.6 v output accuracy i out = i max - 3 +3 % stabili s ation capacitor c out (including voltage and temperature coefficient @ configured vld o 10 ) - 55 % 2.2 +35 % ? f esr of capacitor f > 1 mhz 0.1 ? ? maximum output current i max v dd 1.8 v 250 ma short circuit current i short 500 ma dropout voltage v dropout i out = i max (for v dd < 1.8 v i out = i max /3) 100 150 mv static line regulation v s line v dd = 3.0 v to 5.0 v i out = i max 5 20 mv static load regulation v s load i out = 1 ma to i max 5 20 mv line transient response v tr line v dd = 3.0 v to 3.6 v i out = i max t r = t f = 10 s 5 20 mv
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 30 of 142 ? 2017 dialog semiconductor parameter symbol conditions min typ max unit load transient response v tr load v dd = 3.6 v i out = 1 ma to i max t r = t f = 1 s 30 50 mv psrr psrr f = 10 hz to 10 khz v dd = 3.6 v i out = i max /2 60 70 db output noise n f = 10 hz to 100 khz vdd = 3.6 v i out = 5 ma to i max 80 vrms quiescent current in on mode i q on note 2 8 +0.3 % of i out a quiescent current in off mode i q off note 2 1 a turn on time t on 10 % to 90 % 300 s turn off time t off 90 % to 10 % 10 ms pull down resistance in off mode r off 100 ? ? note 1 programmable in 50 mv steps, maximum output voltage is determined by v dd - v dropout . note 2 programmable in 25 mv increments with micro voltage ramp step size of 6.25 mv/ s while slewing . 8.7.6 ldocore table 19 : ldocore ( t a = - 25 oc to +85 oc ) parameter symbol conditions min typ max unit output v oltage v ddcore i out = 0 ma to i max ( when supplied from v bat ) 2.45 2.15 2.5 2.2 2.55 2.25 v decoupling capacitor c in on v dd _ ref - 35 % 220 +35 % nf stabili s ation capacitor c out (including voltage and temperature coefficient @ 2.5 v) - 55 % 100 +35 % nf esr resistance f > 1 mhz 0.1 ? ? dropout voltage v dropout i out < 10 a ? , follower mode 0.05 0.1 v max o utput c urrent i max 4 ma maximum q uiescent c urrent i q powerdown mode : i out < 20 a 13 17 a
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 31 of 142 ? 2017 dialog semiconductor 8.8 dc/dc buck c onverters 8.8.1 buckcore table 20 : buckcore parameter symbol conditions min typ max unit input voltage v dd v ddout - 0.3 v 2.8 v min v ddout + 0.3 v 5 v m ax v output capacitor c out - 30 % 20 +30 % f output capacitor esr f > 100 khz all caps + track impedance 25 50 m? inductor value l buck - 30 % 2.2 to 4.7 +30 % h inductor resistance r esr 100 150 m? output voltage v bcore i out = i max 0.725 note 1 2.075 v output voltage accuracy incl. static line / load regulation - 3 note 2 +3 % output voltage ripple i out = i max 5 mv load regulation transient v tr load i out = 0 ma / 500 ma, di/dt = 50 ma/s 15 35 mv line regulation transient v tr line v dd = 3.0 v to 3.6 v i out = 500 ma t r =t f =10 s 3 8 mv output current i max during dvc transitions between dvc transitions 700 800 note 3 ma current limit (programmable) i lim note 4 buckcore_ilim=00 - 20 % 700 20 % ma buckcore_ilim=01 - 20 % 800 20 % ma buckcore_ilim=10 - 20 % 1000 20 % ma buckcore_ilim=11 - 20 % 1200 20 % ma quiescent current in off mode i q o ff 1 a quiescent current in synchronous rectification mode i q on 2.2 ma switching frequency f 2 mhz switching duty cycle 10 95 % turn on time t on 2.2 ms output pull down resistor @ v out = 0.5 v, can be switched off via core_pd_dis 200 ? efficiency i out = 30 ma to i max v dd < 4.2 v 85 %
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 32 of 142 ? 2017 dialog semiconductor parameter symbol conditions min typ max unit on resistance pmos r pmos incl. pin and routing 0.5 ? on resistance nmos r nmos incl. pin and routing 0.3 ? pfm mode output voltage v bcore i out < 70 ma 0.5 note 5 2.075 v typical mode switching current 40 ma output current i out 70 ma current limit i lim - 20 % 150 +30 % ma quiescent current in pfm mode i q pfm i out = 0 ma 25 35 a frequency of operation 0 5 mhz efficiency i out = 10 ma to 70 ma 80 % mode transition time 16 18 s note 1 programmable in 25 mv increments with micro voltage ramp step size of 6.25 mv/ s while slewing note 2 minimum tolerance is +/ - 30 mv note 3 v dd > 3.0 v, using coilcraft lps3015 - 222ml note 4 the current limits will be automatically doubled when buckcore is merged with buckpro note 5 m ax. v dd C 1.0 v 8.8.2 buckpro table 21 : buckpro (da9021 only) parameter symbol conditions min typ max unit input voltage v dd v ddout - 0.3 v 2.8 v min v ddout + 0.3 v 5 v m ax v output capacitor c out - 30 % 20 +30 % f output capacitor esr f > 100 khz all caps + track impedance 25 50 m? inductor value l buck - 30 % 2.2 to 4.7 +30 % h inductor resistance r esr 100 150 m? output voltage v bpro i out = i max 0.725 note 1 2.075 v output voltage accuracy incl. static line / load regulation - 3 note 1 +3 % output voltage ripple i out = i max 5 mv load regulation transient v tr load i out = 0 ma to 500 ma step , di/dt = 50 ma/s 15 30 mv
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 33 of 142 ? 2017 dialog semiconductor parameter symbol conditions min typ max unit line regulation transient v tr line vdd = 3.0 v to 3.6 v i out = 500 ma t r =t f =10 s 3 8 mv output current i max during dvc transitions between dvc transitions 700 800 note 2 ma current limit (programmable) i lim buckpro_ilim=00 - 20 % 700 20 % ma buckpro_ilim=01 - 20 % 800 20 % ma buckpro_ilim=10 - 20 % 1000 20 % ma buckpro_ilim=11 - 20 % 1200 20 % ma quiescent current in off mode i q o ff 1 a quiescent current in synchronous rectification mode i q on 2.2 ma switching frequency f 2 mhz switching duty cycle 10 90 % turn on time t on 2.2 ms output pull down resistor @ v out = 0.5 v, can be switched off via pro_pd_dis 200 ? efficiency i out =30 ma to i max v dd < 4.2 v 85 % on resistance pmos r pmos incl. pin and routing 0.5 ? on resistance nmos r nmos incl. pin and routing 0.3 ? pfm mode output voltage v bpro i out < 70 ma 0.5 note 3 2.075 v typical mode switching current 40 note 4 ma output current i max 70 ma current limit i lim - 20 % 150 +30 % ma quiescent current in pfm mode i q pfm i out = 0 20 35 a frequency of operation 0 5 mhz efficiency i out = 10 ma to 70 ma 80 % mode transition time 16 18 s note 1 minimum tolerance is +/ - 30 mv note 2 vdd > 3.0 v using coilcraft lps3015 - 222ml note 3 max . vdd C 1.0 v note 4 minimum tolerance is +/ - 35 mv
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 34 of 142 ? 2017 dialog semiconductor 8.8.3 buckperi table 22 : buckperi (DA9022 only) parameter symbol conditions min typ max unit input voltage v dd v ddout - 0.3 v 2.8 v min v dd _ out + 0.3 v 5 v m ax v output capacitor c out - 30 % 10 +30 % f output capacitor esr f > 100 khz all caps + track impedance 25 50 m? inductor value l buck - 30 % 2.2 or 4.7 +30 % h inductor resistance r esr 100 150 m? output voltage v bperi i out = i max 1.8 note 1 3.6 v output voltage accuracy incl. static line / load regulation - 3 note 2 +3 % output voltage ripple i out = i max 10 mv load regulation transient v tr load vdd = 3.6 v, vbperi < 3.0 v i out = 0 ma to 500 ma step , di/dt = 50 ma/s 20 40 mv v tr load vdd = 3.6 v, vbperi= 3.3 v i out = 0 ma to 500 ma step , di/dt = 50 ma/s 40 80 mv line regulation transient v tr line vdd = 3.0 v to 3.6 v i out = 300 ma t r = t f = 10 s 10 20 mv output current i max i lim during dvc transitions between dvc transitions vbmem < 2.1 v 650 750 note 3 ma current limit (programmable) buckperi_ilim=00 - 20 % 700 20 % ma buckperi_ilim=01 - 20 % 800 20 % ma buckperi_ilim=10 - 20 % 1000 20 % ma buckperi_ilim=11 - 20 % 1200 20 % ma quiescent current in off mode i q o ff 1 a quiescent current in synchronous rectification mode i q on 3 ma switching frequency f 2 mhz switching duty cycle 20 100 % turn on time t on 2.2 ms
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 35 of 142 ? 2017 dialog semiconductor parameter symbol conditions min typ max unit output pull down resistor @ v out = 0.5 v 200 ? efficiency i out < i max v dd < 4.2 v 80 85 % efficiency (half pass device) note 4 2 i out =50 ma to 300 ma v dd < 4.2 v 90 95 % on resistance pmos r pmos incl. pin and routing 0.25 ? on resistance nmos r nmos incl. pin and routing 0.3 ? bypass resistance r b ypass at v ddperi =3.6 v 1.0 ? pfm mode typical mode switching current 40 ma output current i max 70 ma current limit i lim - 20 % 150 +30 % ma quiescent current in pfm mode i q pfm i out = 0 25 35 a frequency of operation 0 5 mhz efficiency i out = 10 ma to 70 ma 80 % mode transition time 16 18 s note 1 programmable in 50 mv increments up to 3 v then in 100 mv increments , maximum output voltage is less than v dd note 2 minimum tolerance is +/ - 35 mv note 3 v dd > 3.0 v using coilcraft lps3015 - 222ml note 4 see cont r ol bperi_hs 8.8.4 buckmem table 23 : buckmem parameter symbol conditions min typ max unit input voltage v dd v ddout - 0.3 v 2.8 v min v ddout + 0.3 v , 5 v m ax v output capacitor c out - 30 % 10 +30 % f output capacitor esr f > 100 khz all caps + track impedance 25 50 m? inductor value l buck - 30 % 2.2 to 4.7 +30 % h inductor resistance r esr 100 150 m? output voltage v bmem i out = i max 0.95 note 1 2.525 v output voltage accuracy incl. static line / load regulation - 3 note 2 +3 % output voltage ripple i out = i max 10 mv
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 36 of 142 ? 2017 dialog semiconductor parameter symbol conditions min typ max unit load regulation transient v tr load i out = 0 ma and 300 ma step , di/dt = 30 ma/s 20 40 mv line regulation transient v tr line v dd = 3.0 v to 3.6 v i out = 300 ma t r = t f = 10 s 5 10 mv output current i max during dvc transitions between dvc transitions < 2.075 v 650 750 note 3 ma current limit (programmable) i lim buckmem_ilim=00 - 20 % 700 20 % ma buckmem_ilim=01 - 20 % 800 20 % ma buckmem_ilim=10 - 20 % 1000 20 % ma buckmem_ilim=11 - 20 % 1200 20 % ma quiescent current in off mode i q o ff 1 a quiescent current in synchronous rectification mode i q on 2.2 ma switching frequency f 2 mhz switching duty cycle 10 90 % turn on time t on 2.2 ms output pull down resistor @ v out = 0.5 v, can be switched off via mem_pd_dis 250 ? efficiency i out =30 ma to i max v dd < 4.2 v 85 % on resistance pmos r pmos incl. pin and routing 0.5 ? on resistance nmos r nmos incl. pin and routing 0.3 ? pfm mode typical mode switching current 40 ma output current i max 70 ma current limit i lim - 20 % 150 + 30% ma quiescent current in pfm mode i q pfm i out = 0 20 35 a frequency of operation 0 5 mhz efficiency i out = 10 ma to 70 ma 80 % mode transition time 16 18 s note 1 programmable in 25 mv increments with micro voltage ramp step size of 6.25 mv/ s while slewing note 2 minimum tolerance is +/ - 35 m v note 3 v dd > 3 .0 v, using coilcraft lps3015 - 222ml
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 37 of 142 ? 2017 dialog semiconductor 8.9 battery charger table 24 : battery charger supply mode symbol test conditions min typ max unit vbus vusb 4.4 5.5 v usb2.0 host/hub mode (default) iset_usb 70 note 1 1300 ma note 1 programmable in 10 ma increments from 70 ma to 120 ma and 100 ma increments from 400 ma to 1300 ma 8.9.1 charger b uck table 25 : charger b uck parameter symbol test conditions min typ max unit input voltage v center 4.4 5.6 v output capacitor c out 30 f esr of output capacitor f > 100 khz 20 m inductor value l buck - 30 % 4.7 +30 % h inductor resistance r esr f = 1 mhz 100 150 m output voltage v ddout i out = 1000 ma 3.6 vbat + 200 mv v ripple voltage i out = 1000 ma 10 mv line regulation transient v tr line vbus_prot = 4.4 v - 5.5 v, i out = 1000 ma t r = t f = 10 s 10 mv output current i max 1300 ma current limitation i lim 2 - wire programmable (different step sizes for different ranges) 70 1300 ma quiescent current in off mode 1 a quiescent current in synchronous rectification mode 5 ma f_buck frequency of operation 2 mhz switching duty cycle 10 100 % t on turn on time 2.2 m efficiency i out = 1000 ma vbus_prot = 5 v 85 90 % r_pmos pmos on resistance incl . pin and routing 0.08 0.15 0.2 r_nmos nmos on resistance incl . pin and routing 0.15 0.25 0.3
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 38 of 142 ? 2017 dialog semiconductor parameter symbol test conditions min typ max unit r_vbus_prot internal switch on resistance incl pin and routing, vbus_prot= 4.8 v 0.05 0.1 0. 2 sleep mode C pfm mode sleep mode output current i outsleep 100 ma current limitation 300 550 ma iq_ sleep C no load supply current in sleep mode i out = 0 ma (due to high precision current limit) 80 100 a f_buck frequency of operation 0 3 mhz efficiency i out = 10 ma to 100 ma 85 % efficiency i out = 1 ma to 50 ma v dd =4.8 v 75 % mode transition time 16 18 s 8.9.2 voltage levels on vbat table 26 : voltage levels on vbat parameter symbol test conditions min typ max unit v bat_fault v bat_fault 2.9 v ichg_bat (ichg_pre over - ride) i chg_bat v bat < v bat_fault 20 40 60 ma 8.9.3 charging modes table 27 : charging modes supply mode symbol test conditions min typ max unit cc mode output current 6 bits i chg_bat (20 ma steps) 0 200 1260 ma cc absolute accuracy i chg_bat < 100 ma - 10 +10 ma cc absolute accuracy i chg_bat > 100 ma - 10 +10 % cv mode output voltage v chg_bat (25 mv steps) 3.65 4.2 4.425 v cv output voltage accuracy v chg_bat - 25 +25 mv
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 39 of 142 ? 2017 dialog semiconductor 8.9.4 charger detection circuit table 28 : c harger detection circuit supply mode symbol test conditions min typ max unit charger detect threshold v ch_det 4.25 4.35 4.4 v charger current limit reduction threshold v chg_thr (configurable) 3.7 3.8 4.35 v charger insertion debounce time v chg_ins_deb 10 ms v bus , excess voltage threshold v chg_excess 5.5 5.6 5.8 v 8.9.5 vbus charge control table 29 : vbus c harge control supply mode symbol test conditions min typ max unit vbus load in low power suspend mode i vbus_suspend 0 v v bus 5.25 v t avg = <1 s, no spikes higher than 100 ma 500 a 8.9.6 charge timer table 30 : charge timer supply mode symbol test conditions min typ max unit total c harging t imer setting t ctr total charge time is defined as the total charge time from when the charger was enabled (both for linear and pre - charge mode charging). if the timer expires, the chg_to flag is set in the event register, an irq issued and the charging is disabled. the default tctr setting is 0x0a. setting the tctr to 0x00 disables the timer. 0 30 450 min read back of current timer value c hg_time this register can be used to read back the current value of the charge time counter, counting down from the value loaded by the tctr 0 2 510 min 8.9.7 dccc and a ctive - d iode table 31 : dccc and a ctive - d iode supply mode symbol test conditions min typ max unit active d iode on resistance r on v bat =3.6 v i=500 ma i ncl pin and routing 0.14 circuit a ctivation v oltage v bat - v ddout 10 20 40 mv maximum diode current i d max 2.2 a
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 40 of 142 ? 2017 dialog semiconductor 8.10 oscillator table 32 : oscillator (t a = - 25 oc to +85 oc ) supply mode symbol test conditions min typ max unit internal oscillator frequency before trimming after trimming 1.4 1.9 2.0 2.6 2.1 mhz 8.11 reference v oltage g eneration and t emperature s upervision table 33 : reference v oltage g eneration and t emperature s upervision (t a = - 25 o c to +85 oc ) supply mode symbol test conditions min typ max unit reference v oltage v dd _ ref _ pin - 1 % 1.2 +1 % v vdd _ ref decoupling capacitor 100 nf reference c urrent resistor i ref pin - 1 % 200 +1 % k? thermal s hutdown t over 125 140 155 oc charge current reduction t chargelow 75 90 115 oc charge suspend t charge _ suspend 105 120 135 oc hysteresis 10 oc
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 41 of 142 ? 2017 dialog semiconductor 9 r eal t ime c lock and 32 khz o scillator the real time clock (rtc) block keeps track of the rtc clock counter and alarm function. the rtc block will operate from the ldo_core power supply. 9.1 32 khz o scillator the clock oscillator cell is used to drive the rtc counter. it works with an external p iezoelectric oscillator crystal at 32.768 khz. in order to achieve the desired crystal frequency connect an external capacitor (10 pf to 20 pf, depending on the parasitic capacitance of the board) to ground from each of the crystal pins. the start - up time of the oscillator is typically 0.5 s over the voltage range. when the crystal is not mounted , ground the unpopulated crystal pins. the 32 khz clock signal is made available at the out_32k pin and the buffer can be disabled from the sequencer during powerd own mode. the timekeeping error from the frequency variance of crystal oscillators (typ. +/ - 20 ppm) can be trimmed individually by +/ - 242 ppm with a resolution of 1.9 ppm (1/(32768 * 16)). more advanced solutions will be able to dynamically correct the t emperature related oscillator frequency drift (> 100 ppm) by using a periodic temperature measurement located close to the crystal. the timekeeping correction will be applied only towards the on - chip rtc block . to avoid potential clock jitter issues , the 3 2 khz clock signal at the out_32k pin provides the original frequency of the crystal. 9.2 rtc c ounter and a larm the rtc counter can count the number of 32 khz clock periods, providing a seconds , minutes , hours , day , month and year output , up to 63 years . year 0 corresponds to 2000. the value of the rtc calendar shall be read - /write - able via the power manager communication. the calendar is reset to zero when v ddcore is lost. there is an alarm register containing minutes , hours , day, month and year. when the rt c counter register value corresponds to the value set in the alarm an interrupt request ( irq ) event and a wakeup ( if da9021/22 is in powerdown mode ) will be triggered . the trigger will also set a bit in an event register to notify that an alarm has occur red. the alarm can alternatively be asserted from a periodic tick signal that, depending on control tick_type, is either asserted every second or minute. in the case the host has enabled both alarms it can determine from the status of alarm_type whether th e irq/wakeup was caused by the timer or the tick. note the oscillator inputs can withstand a leakage current, corresponding to at least a 10 m? connected between the pin and any signal level between v dd out and gnd. the power manager registers alarm_on and tick_on enable/disable the alarm/tick. the power manager register bit monitor is set to 0 each time the rtc is powered up. the s oftware set s this bit to 1 when setting the time and date, which allow s the softwar e to detect a subsequent loss of the clock. note values written into the rtc calendar and alarm registers must be within the allowed range (see register description, for example maximum 60 for seconds or minutes). the rtc seconds registers define a 32 - bi t seconds counter (approx imately 136 years), that can only be reset via the npor and starts counting seconds after npor is released. using the rtc input clock the output port gpo10 can be toggled with a configurable periodic pulse. in this mode gpo10 offer s blinking led drivers that are able to run in powerdown mode .
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 42 of 142 ? 2017 dialog semiconductor figure 6 : schematics of the rtc oscillator and counter functionality 32 . 768 khz crystal x in x out comparator alarm 32 k _ osc internal clock power manger register ( r / w ) rtc calendar counter power manger register ( r / w ) alarm register alarm _ on q q set clr s r vdd core register write vdd core vdd core vdd core vdd core q q set clr s r vdd core monitor monitor npor vdd core c 32 k c 32 k
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 43 of 142 ? 2017 dialog semiconductor 10 typical c haracteristics 10.1 buck r egulator performance figure 7 : b uckperi efficiency curves figure 8 : b uck c ore efficiency curves figure 9 : b uck p ro efficiency curves figure 10 : b uck m em efficiency curves figure 11 : typical b uck l ine t ransient figure 12 : typical b uck l oad t ransient note 1 ch2: v bat , ch3: v out , ch4: i coil v out = 2.5 v, no load, v bat = 3.0 v to 3.6 v step, t_rise = t_fall = ~10 s note 1 ch1: i coil , ch2: v out , ch4: i load v out = 1.8 v, v bat = 4 v, i load = 0 v to 500 ma, di/dt~50 ma/ s, rising buck peri, vbat=3.7v, vout=3.3v 0 10 20 30 40 50 60 70 80 90 100 0.0010 0.0100 0.1000 1.0000 iload (a) efficiency (%) auto model pfm mode pwm mode buck core, vbat=3.2v, vout=2.075v 0 10 20 30 40 50 60 70 80 90 100 0.0010 0.0100 0.1000 1.0000 iload (a) efficiency (%) auto model pfm mode pwm mode buck pro, vbat=3.2v, vout=2.075v 0 10 20 30 40 50 60 70 80 90 100 0.0010 0.0100 0.1000 1.0000 iload (a) efficiency (%) auto model pfm mode pwm mode buck mem, vbat=3.7v, vout=2v 0 10 20 30 40 50 60 70 80 90 100 0.0010 0.0100 0.1000 1.0000 iload (a) efficiency (%) auto model pfm mode pwm mode
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 44 of 142 ? 2017 dialog semiconductor 10.2 linear regulator performance figure 13 : typical ldo l oad regulation figure 14 : typical ldo drop - out voltage figure 15 : typical ldo l ine t ransient figure 16 : ldo l oad t ransient ( t ransient of 3.6 v to 4.2 v at v bat ). top t race = v bat , b ottom t race = v ld01 (1 ma to i max of 40 ma) v ldo = 1.2 v top t race = v ld01 , b ottom t race = load figure 17 : typical ldo voltage vs t emperature ldo3 dropout voltage vs load current (using test mux) 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 load current (a) dropout voltage (v)
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 45 of 142 ? 2017 dialog semiconductor 10.3 adc p erformance figure 18 : adc dnl performance figure 19 : adc inl performance 10.4 power path performance figure 20 power path behaviour usb100 mode figure 21 power path behaviour usb500 mode figures 20 and 21 show increasing load current supplied from v bus , power path loop reduces i ch until active diode turns on which then allows current from battery to supply system load current via v ddout . figure 22 : transitioning supply from usb 5 v (via v bus ) to v bat top trace = vddout , bottom trace = v bus usb 100 mode, vbus=5v, vbat=3.8v, ich=100ma -0.100 -0.080 -0.060 -0.040 -0.020 0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180 0.200 iout (a) current (a) 3.500 3.550 3.600 3.650 3.700 3.750 3.800 3.850 3.900 3.950 4.000 4.050 vdd_out (v) i_bat (a) i_usb (a) vdd_out active diode ibus limit vdd_out usb 500 mode, vbus=5v, vbat=3.8v, ich=300ma -0.300 -0.200 -0.100 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 iout (a) current (a) 3.200 3.300 3.400 3.500 3.600 3.700 3.800 3.900 4.000 4.100 vdd_out (v) i_bat (a) i_usb (a) vdd_out active diode ibus limit vdd_out
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 46 of 142 ? 2017 dialog semiconductor 11 functional d escription figure 23 : control ports and interface 11.1 power m anager io ports the power manager input ports are supplied either from the internal rail vddcore or vdd_io, selected via pm_i_v . the output ports are supplied from vdd_io. d uring the initial s tart - up sequence the power manager io ports are in tri - state mode until being configured from otp when leaving reset mode , except nreset, nirq, pwr_up/gp_fb2 . output ports are push - pull type except for nreset and nirq, which can also be configured to open drain. 11.2 on/ o ff (nonkey) the nonkey signal is a level active low wakeup interrupt/event intended to switch - on the da9021/22 supplied application. nonkey is always enabled during powerdown mode, so that the application can be also switched - on with a disable d gpio extender. the wakeup event can be disabled via the interrupt mask m_nonkey. 11.3 hardware r eset (nshutdown, nonkey, gpio14 & gpio15) a user - initiated hard reset at the da9021/22 nshutdown is an active low input initiated typically by a push button switch or an asserted error detection line from a host processor. the sequencer then powers down all domains in reverse order down to step 0 and all supplies of da9021/22 except ldoco re are switched off. da9021/22 includes a second hardware reset that follows the nonkey after being asserted for a period of 5 s 30 %. the same can be achieved by a parallel connection of gpi14 and gpi15 to ground for 5 s 30 %. this feature provides the ability to emergency turn - off the application in the event of a software lock - up without the need for a dedicated reset hardware switch or removing the battery. after a minimum time - out of 500 ms da9021/22 will start to power up again. it will wait for a valid w akeup event ( for example key press) or will start the power sequencer automatically. by asserting ext_wakeup it can request the host processor to control the subsequent start - up. alternatively the power up sequence can be performed autonomousl y by the pmic following otp pre - configurations. d a 9 0 2 1 h o s t p r o c e s s o r n i r q n o n k e y n r e s e t v d d v b u s d c i n n s h u t d o w n g p i o _ x o u t _ 3 2 k c o n t r o l i f p w r _ u p s y s _ u p
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 47 of 14 2 ? 2017 dialog semiconductor a detection of a hard reset forces the assertion of nreset to low when the sequencer returns from powerdown mode to reset mode . this type of reset is typically used only for severe or unrecoverable hardware o r software problems, because it completely resets the processor and can result in data loss. 11.4 reset output (nreset) the nreset signal is an active - low output signal from da9021/22 to the host processor, which tells the host to enter the hardware - reset sta te. nreset is always asserted at the beginning of a da9021/22 cold start from no - power mode and when the da9021/22 returns to reset mode . nreset can also be asserted as a soft reset after the sequencer finishes powering down without progressing to rese t - mode . the reset timer trigger signal can be configured to be ext_wakeup, sys_up or pwr_up. after being asserted nreset remains low until the reset timer is started from the selected trigger signal and expires. the expiry time can be configured from 1 ms to 1024 ms. 11.5 system e nable (sys_en) sys_en is an input signal from the host processor to da9021/22 (or can be default enabled via otp settings), which initiates enabling the system power supplies. the control sys_en will be initiali s ed from otp if the re lated port is configured as gpi or gpo. the register bit sys_en can be read and changed via the control interfaces. da9021/22 will not accept any power mode transition commands until the sequencer has stopped processing ids. de - asserting sys_en informs t he da9021/22 that the host processor is going into a standby/hibernate mode. when the port is changing from active to passive state there is no irq or wakeup event trigger. with the exception of supplies that are configured in active mode with a voltage preset before powering down , all regulators and buck converters in power domain power1, power and system will be sequentially disabled in reverse order. 11.6 power e nable (pwr_en) pwr_en is an input signal from the host processor to da9021/22 ( or is configur ed via otp or host commands ) . initialisation, irq assertion and register bit pwr_en control is similar to sys_en. to ensure the correct sequencing sys_en has to be active before asserting pwr_en. when de - asserting sys_en the sequencer will sequentially pow er down power1, power and system domains respectively. 11.7 power1 e nable (pwr1_en) pwr1_en is an input signal from a host to da9021/22 and is configured via otp or host commands. initialisation, irq assertion and register bit pwr1_en control is similar to sys_en. the domain power1 is a sub power domain for general purpose. 11.8 general p urpose f eedback signal 1 (gp_fb1: ext_wakeup/ready) the feedback gp_fb1 supports two different modes. if configured as ext_wakeup it is an active high output signal to the host processor that indicates a valid wakeup event during powerdown m ode. external signals that are causing wakeup events are debounced bef ore da9021/22 asserts the ext_wakeup signal. ext_wakeup is released when entering the active mode . if configured as ready signal it indicates ongoing dvc or power sequencer activities. the signal is active low and is asserted from da9021/22 as long as the power sequencer processes ids or dvc voltage transitions are ongoing.
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 48 of 142 ? 2017 dialog semiconductor 11.9 power domain status (pwr _up/gp_fb2) the power domain status indicators are active high and assigned after the sequencer has processed all ids of a power domain (all assigned suppl ies are up). when domains are disabled during power mode transitions the status indicator is released before the da9021/22 sequencer processes the last step of a domain. pwr_up is one mode of the general purpose indicator gp_fb2 that can also be used as a configurable feedback signal that is level/time controlled from the power sequencer. 11.10 supply r ail f ault (nvdd_fault) nvdd_fault is an active low output signal to the host processor to indicate a vddout low status. the assertion of nvdd_fault indicates tha t the main battery and the supply input voltage is low and therefore informs the host processor that the power will shut down very soon. after that the processor may operate for a limited time from the backup battery, which can provide power to the process or for a few cycles. in the event of nvdd_fault assertion the processor may be programmed to enter an emergency mode, for example external memory data refresh is no longer performed. 11.11 interrupt r equest (nirq) the nirq is an active low output signal which in dicates that an interrupt causing event has occurred and that the event and status information is available in the related registers. such information can be temperature and voltage of the pmic, fault conditions, charging status, status changes at gpi port s, and others . the event registers hold information about the events that have occurred. events are triggered by a status change at the monitored signals. when an event bit is set the nirq signal is asserted (unless this interrupt is masked by a bit in the irq mask register). the nirq will not be released until the event registers have been cleared. 11.12 real time clock output (out_32k) the out_32k is an output signal that generates a buffered signal of the da9021/22 32 khz oscillator. the 32 khz oscillator wi ll always run on the da9021/22 following the initial start - up from no - power m ode until the device has reached no - power m ode again. the signal output buffer can be disabled during powerdown mode with bit out_32k_pd. 11.13 io_ s upply v oltage (vdd_io) vdd_io is an independent io supply rail input of da9021/22 that can be assigned to the power manager interface, power manager ios and gpios. the rail assignment determines the io voltage levels and logic. the selection of the supply rail for gpios is als o partially used for their alternate functions. gpos configured in open drain mode have to use the vdd_io rail if an internal pull - up resistor is required.
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 49 of 142 ? 2017 dialog semiconductor 12 control i nterfaces the da9021/22 is completely software controlled from the host by registers. da9021/22 offers two independent serial control interfaces to access these registers. the communication via the main power manager interface is selectable to be either a 2 - wire or a 4 - wire connection ( i 2 c or spi compliant). the alternate interface is fix ed towards a 2 - wire bus. data is shifted in to or out from da9021/22 under the control of the host processor that also provides the serial clock. 12.1 power m anager i nterface (4 - wire and 2 - wire control bus) this is the dedicated power control interface from the primary host processor. in 4 - wire mode the interface uses a chip - select line (ncs/nss), a clock line (sk), data input (si) and data output line (so). 12.2 4 - wire c ommunication in 4 - wire mode the da9021/22 register map is split into two pages with each p age containing up to 128 registers. the register at address zero on each page is used as a page control register. the default active page after reset includes registers r1 to r127. writing to the page control register changes the active page for all subseq uent read/write operations. after modifying the active page it is recommended to read back the page control register to ensure that future data exchange is accessing the intended registers. the 4 - wire interface features a half - duplex operation (data can b e transmitted and received within a single 16 - bit frame) at enhanced clock speed (up to 14 mhz). it operates at the provided host clock frequencies. figure 24 : schematic of 4 - wire and 2 - wire p ower m anag er b us a transmission begins when initiated by the host. reading and writing is accomplished by the use of an 8 - bit command, which is sent by the host prior to the exchanged 8 - bit data. the byte from the host begins shifting in on the si pin under the control of the serial clock sk provided from the host. the first 7 bits specify the register address (0 to 127, decimal) which will be written or read by the host. the register add ress is automatically decoded after receiving the seventh address bit. the command word ends with an r/w bit, which specifies the direction of the following data exchange. during register writing the host continues sending out data during the following 8 s k clocks. for reading the host stops transmitting and the 8 - bit register is clocked out of da9021/22 during the consecutive eight sk clocks of the frame. address and data are transmitted with msb first. ncs resets the interface when inactive and it has t o be released between successive cycles. the so output from da9021/22 is normally in high - impedance state and active only during the second half of read cycles. a pull - up or pull - down resistor may be needed at the so line if a floating logic signal is c aus ing unintended current consumption inside other circuits. d a 9 0 2 1 ( s l a v e ) h o s t p r o c e s s o r s k s o s i n c s / n s s n c s / n s s s i s k s o n c s / n s s v d d i o v d d i o v d d i o s l a v e d e v i c e s i s k s o n c s / n s s v d d i o 4 - w i r e i n t e r f a c e h o s t p r o c e s s o r d a 9 0 2 1 p e r i p h e r a l d e v i c e s o s k p e r i p h e r a l d e v i c e s d a s c l s c l s d a v d d i o v d d i o 2 - w i r e i n t e r f a c e
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 50 of 142 ? 2017 dialog semiconductor table 34 : 4 - wire clock configurations cpol clock polarity cpha clock phase output data is updated at sk edge input data is registered at sk edge 0 (idle low) 0 falling rising 0 (idle low) 1 rising falling 1 (idle high) 0 rising falling 1 (idle high) 1 falling rising the da9021/22 4 - wire interface offers two further configuration bits. clock polarity (cpol) and clock phase (cpha) define when the interface will latch the serial data bits. cpol determines whether sk idles high (cpol = 1) or low (cpol = 0). cpha determines on which sk edge d ata is shifted in and out. with cpol = 0 and cpha = 0 setting da9021/22 latches data on the sk rising edge. if the cpha is set to 1 the data is latched on the sk falling edge. cpol and cpha states allow four different combinations of clock polarity and phase; each setting is incompatible with the other three. the host and da9021/22 must be set to the same cpol and cpha states to communicate with each other. figure 25 : 4 - wire h ost w rite and r ead tim ing (ncs_pol = 0, cpol = 0, cpha = 0 ) a 0 a 6 a 5 a 4 a 3 a 2 a 1 r / w n d 0 d 6 d 5 d 4 d 3 d 2 d 1 d 7 n c s s k s i s o 4 - w i r e w r i t e a 0 a 6 a 5 a 4 a 3 a 2 a 1 r / w n n c s s k s i s o 4 - w i r e r e a d d 0 d 6 d 5 d 4 d 3 d 2 d 1 d 7 l a t c h d a t a h i - z
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 51 of 142 ? 2017 dialog semiconductor figure 26 : 4 - wire h ost w rite and r ead timing (ncs_pol = 0, cpol = 0, cpha = 1) figure 27 : 4 - wire h ost w rite and r ead timing (ncs_pol = 0, cpol = 1, cpha = 0) a 0 a 6 a 5 a 4 a 3 a 2 a 1 r / w n d 0 d 6 d 5 d 4 d 3 d 2 d 1 d 7 n c s s k s i s o 4 - w i r e w r i t e a 0 a 6 a 5 a 4 a 3 a 2 a 1 r / w n n c s s k s i s o 4 - w i r e r e a d d 0 d 6 d 5 d 4 d 3 d 2 d 1 d 7 l a t c h d a t a h i - z a 0 a 6 a 5 a 4 a 3 a 2 a 1 r / w n d 0 d 6 d 5 d 4 d 3 d 2 d 1 d 7 n c s s k s i s o 4 - w i r e w r i t e a 0 a 6 a 5 a 4 a 3 a 2 a 1 r / w n n c s s k s i s o 4 - w i r e r e a d d 0 d 6 d 5 d 4 d 3 d 2 d 1 d 7 l a t c h d a t a h i - z
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 52 of 142 ? 2017 dialog semiconductor figure 28 : 4 - wire h ost w rite and r ead timing (ncs_pol = 0, cpol = 1, cpha = 1) table 35 : 4 - wire interface summary parameter signal l ines ncs chip select si serial input data master out slave in so serial output data master in slave out sk transmission clock interface push - pull with tristate supply voltage vdd_io 1.6 v to 3.3 v data rate effective read/write data up to 7 mbps transmission half - duplex msb first 16 - bit cycles 7 - bit address, 1 - bit read/write, 8 - bit data configuration cpol c lock polarity cpha c lock phase ncs is active low/high note reading the same register at high clock rates directly after writing it does not guarantee a correct value. it is recommended to keep a delay of one frame until re - accessing a register that has just been written ( for example by writing/reading another register address in between). a 0 a 6 a 5 a 4 a 3 a 2 a 1 r / w n d 0 d 6 d 5 d 4 d 3 d 2 d 1 d 7 n c s s k s i s o 4 - w i r e w r i t e a 0 a 6 a 5 a 4 a 3 a 2 a 1 r / w n n c s s k s i s o 4 - w i r e r e a d d 0 d 6 d 5 d 4 d 3 d 2 d 1 d 7 l a t c h d a t a h i - z
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 53 of 142 ? 2017 dialog semiconductor 12.3 2 - wire c ommun ication the power manager interface can be configured for a 2 - wire serial data exchange. it has a configurable slave write address (default: 0x90) and a configurable slave read address (default: 0x91). sk provides the 2 - wire clock and so carries all the p ower manager bidirectional 2 - wire data. the 2 - wire interface is open - drain supporting multiple devices on a single line. the bus lines have to be pulled high by external pull - up resistors (2 k ? to 20 k ? range). the attached devices only drive the bus lines low by connecting them to ground. as a result two devices cannot conflict, if they drive the bus simultaneously. in standard/fast mode the highest frequency of the bus is 400 khz. the exact frequency can be determined by the application and do es not have any relation to the da9021/22 internal clock signals. da9021/22 will follow the host clock speed within the described limitations and does not initiate any clock arbitration or slow down. in high speed mode the maximum frequency of the bus can be incre ased up to 1.7 mhz. this mode is supported if the sk line is driven with a push - pull stage from the host and if the host enables an external 3 ma pull - up at the so pin to decrease the rise time of the data. in this mode the so line on da9021/22 is able t o sink up to 12 ma. in all other respects the high speed mode behaves as the standard/fast mode. communication on the 2 - wire bus always takes place between two devices, one acting as the master and the other as the slave. the da9021/22 will only operate as a slave. as opposed to the 4 - wire mode the 2 - wire interface has direct (linear) access to the whole da9021/22 register space (except r0 / r128). this is achieved by using the msb of the 2 - wire , 8 - bit register address as a selector of the register page (this does not modify the page control register r0 / r128 that is accessible only in 4 - wire mode). 12.3.1 2 - wire control bus protocol all data is transmitted across the 2 - wire bus in groups of 8 bit s. to send a bit the so line is driven towards the independent state while the sk is low (a low on so indicates a zero bit). once the so has settled the sk line is brought high and then low. this pulse on sk clocks the so bit into the receivers shift register. a two b yte serial protocol is used containing one byte for address and one byte for data. data and address transfer is msb transmitted first for both read and write operations. all transmission begins with the start condition from the master during the bus is in idle state (the bus is free). it is initiated by a high to low transition on the so line while the sk is in the high state (a stop condition is indicated by a low to high transition on the so line while the sk is in the high state). the 2 - wire bus will be monitored by da9021/22 for a valid slave address whenever the interface is enabled. it responds immediately when it receives its own slave address. these acknowledge is done by pulling the so line low during the following clock cycle (white blocks marked with a in figure 2 9 to figure 3 3 ). the protocol for a register write from master to slave consists of a start condition, a slave address with read/write bit and the 8 - bit register address followed by 8 bits of data terminated by a stop condition (all bytes responded by da9021/22 with acknowledge): figure 29 : timing of 2 - wire start and stop condition sk / slk so / data
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 54 of 142 ? 2017 dialog semiconductor figure 30 : 2 - wire b yte w rite (so/data line) when the host reads data from a register it first has to write access da9021/22 with the target register address and then read access da9021/22 with a repeated start or alternatively a secon d start condition. after receiving the data the host sends not a cknowledge and terminates the transmission with a stop condition: figure 31 : examples of 2 - wire b yte r ead (so/data line) note the slave address after the repeated start condition must be the same as the previous slave address. consecutive (page) write mode is supported if the m aster sends several data bytes following a slave register address. the 2 - wire control block then increments the a ddress pointer to the next 2 - wire address, stores the received data and sends an acknowledge until the master sends the stop condition. figure 32 : 2 - wire p age w rite (so/data line) an alternate write mode receiving alternated register address and data can be configured to support host repeated write operations that access several but non - consecutive registers. data will be stored at the previously received register address: figure 33 : 2 - wire r epeated w rite (so/data line) if a new start or stop condition occurs within a message, the bus will return to idle mode. slaveadr w regadr a data a p s = start condition a = acknowledge ( low) p = stop condition w = write (low) master to slave slave to master 7 - bits 1 - bit 8 - bits 8 - bits a s s slaveadr w a regadr a slaveadr a s = start condition a = acknowledge ( low) sr = repeated start condition a * = not acknowledge p = stop condition w = write (low) r = read (high) master to slave 7 - bits 1 - bit 8 - bits 7 - bits data a * sr r 1 - bit 8 - bits slaveadr a 7 - bits data p s r 1 - bit 8 - bits p a * slave to master s slaveadr w a regadr p 7 - bits 1 - bit 8 - bits a s s laveadr w a regadr a data a s = start condition a = acknowledge (low) sr = repeat start condition a * = not acknowledge p = stop condition w = write (low) r = read (high) master to slave slave to master 7 - bits 1 bit 8 - bits 8 - bits data a 1 - bit 8 - bits a p data . a 8 - bits repeated writes s s laveadr w a regadr a data a s = start condition a = acknowledge (low) sr = repeat start condition a * = not acknowledge p = stop condition w = write (low) r = read (high) master to slave slave to master 7 - bits 1 bit 8 - bits 8 - bits regadr a 1 - bit 8 - bits a p data . a 8 - bits repeated writes
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 55 of 142 ? 2017 dialog semiconductor 12.3.2 alternat iv e h igh s peed 2 - wire interface the high speed 2 - wire (hs - 2 - wire ) interface is the alternat iv e serial control bus, which consists of a data (data line) and a clk (clock line) that can be used as an independent control interface for data transactions between da9021/22 and a second host processor. the da9021/22 hs - 2 - wire interface has a configurable 8 - bit slave write address (default: 0x92) and a configurable slave read address (default: 0x93). the interface is enabled if data was selected via configuration gpio14_pin. the bus lines have to be pulled high by external pull - up resistors (2 k ? to 20 k ? range). gpio15_type defines the supply rail of the interface (used for input logic levels and the internal pull - up resistors). the controls gpio15_pin and gpio15_ mode are disabled when the interface was enabled via gpio14 _pin. whenever the interface receives a read or write command that includes a matching slave address it is able to trigger the assertion of a n nirq including an optional wakeup event (enabled via gpio14_ mode). note if the nirq assertion from interface ac cess is enabled it may by masked as long as the hs - 2 - wire is in use (this nirq cannot be cleared via the hs - 2_ wire interface because every interface access will trigger a re - assertion). with the exception of the interface base address and the optional wak eup , the characteristics of the hs - 2 - wire interface are identical to the power manager 2 - wire interface (see above). note by connecting tp to vddcore the da9021/22 ( power commander m ode) will load the register default values via the hs 2 - wire interface instead of from otp cells. in this mode the interface will be supplied from vddcore (independent to the settings at gpio15_type).
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 56 of 142 ? 2017 dialog semiconductor 13 da9021 o perating m odes 13.1 active m ode a running application is typically in active mode . in addition to pmic core f unctions ( for example ldocore, binary coded decimal ( bcd ) counter and internal oscillator) in active m ode a set of supplies and peripheral features like the battery charger and gp - adc are usually enabled. if required in active m ode the host processor can t ake over the control of the automatic battery charging block and is able to respond to any faults that have been detected. status information can be read from the host processor via the power manager bus and da9021/22 can flag interrupt requests to the h ost via a dedicated interrupt port (nirq). temperature and voltages inside and outside the da9021/22 can be monitored and any fault conditions are flagged to the host processor. 13.2 powerdown m ode da9021/22 is in powerdown m ode whenever the power domain sy stem is disabled (even partially). this can be achieved when progressing from reset mode or by returning from active mode . a return from active mode is initiated by low power mode instructions from the host or occurs as an interim state during an applicati on shutdown to reset mode . during powerdown mode the ldocore, the bandgap , the nonkey and the bcd counter are active. dedicated power supplies can be enabled during powerdown mode if power down voltages have been pre - configured during active mode . in addition gpio - ports, the gp - adc, battery charger and the control interfaces remain enabled if not disabled via register pd_dis. disabling blocks during powerdown mode will save quiescent current especially if all blocks are disabled that require an o scillator clock. if the host will no longer communicate during powerdown mode the control interfaces may be temporarily disabled (see controls pm - if_pd/hs - 2 - wire _pd . ). d edicated power supplies can be enabled in power - down mode if power down voltages has be en pre - configured during active mode . the internal oscillator (2 mhz) will only run on demand ( for example for a running gp - adc or enabled bucks that are not forced to pfm mode). t he digital control logic of disabled features (regulators, bucks, chargers, gp - adc, and others ) will be disconnected from the clock tree by clock gating , so that the device offer s an optimi s ed dissipation power in powerdown mode . following the next w akeup event all supplies are re - configured with their default voltage values from otp and the sequencer timers are set to their default otp values. if the powerdown mode was caused by releasing sys_en the sequencer pointer is located at position 0 allow ing default en abling / disabling of supplies (beside ldocore). 13.3 reset mode da9021/22 is in reset mode whenever a complete application reset is required. the reset mode happens after cold start when progressing from no - power mode or can be forced by the user via a pressed reset switch that is connected to port nshutdown, a long press of nonkey (if the reset feature was enabled) or a long parallel assertion of gpio14 and gpio15 (if this reset feature was enabled), from the host pro cessor by asserting port nshutdown or via an error detection from da9021/22 . da9021/22 error conditions that force a reset mode : an under - voltage detected at vddout (vddout < vdd_fault_lower) an internal die over - temperature detected an over voltage or over current at the boost in order to allow the host to determine the reason for the reset a faultlog register records the cause. when returning from powerdown mode the reset mode will be achieved after powering down domain system completely and continue towards a state with absolute minimum current consumption, with the only active circuits being ldocore, the bcd counter, the band gap and the
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 57 of 142 ? 2017 dialog semiconductor vdd _ ref, vbus, acc_id_det and vddout comparators. except ldo1, if correctly configured, other supplies and blocks on da9021/22 are automatically disabled to avoid draining the battery. during da9021/22 reset mode the host processor can be held in a reset state via port nreset which is always asserted to low when da9021/22 progresses from reset mode ( for example after cold start from no - power mode ) and can be asserted (depending on configuration of sequencer step 0) when the sequencer has finished powering down domain system (even partially ). except e_b_fault and e_alarm , all asserted events will automatically be cleared and the da9021/22 register configuration will be re - loaded from otp when leaving reset mode (with the exception of auto_boot in case of emergency charging). note fault_log and other non otp loaded registers , for example the rtc calendar and alarm , will not be changed when leaving reset mode. some reset conditions such as the shutdown via register bit, will automatically expire over - temperature . other conditions like asserting the port nshutdown need to be released to en able a progress from reset to powerdown mode . if the reset was initiated by a hardware reset from user keys or port nshutdown a 500 ms time out will be inserted before trying to power up again. when the reset condition has disappeared da9021/22 requires either a connected good main battery (vddout > vdd_fault_upper) or a detected supply (vbus > vch_thr) that is able to provide enough power to vddout (vddout > vddout_min) to start - up to powerdown mode . 13.4 no - power mode da9021/22 will enter the no - power mode when vddcore drops below vpor_lower ( for example during continued discharge of main battery). as long as vddcore is now lower than vpor_upper the core supply ldocore, the 32 khz oscillator and the bcd counter are switched off, an internal power - on - re set (npor) is asserted and only the vddcore comparator is active and checks for a condition that allows da9021/22 to turn on again. when da9021/22 detects either a good main battery or a connected supply charger which rises vddcore > vpor_upper it will reset the bcd counter and fault_log register and progress to reset mode . 13.5 power commander mode this is a special mode for evaluation and configuration. in power commander mode da9021/22 is configured to load the control register default values from the hs 2 - wire interface instead of from the otp cells so that un - programmed da9021 samples will power up and allow a pc running the power commander software to load all the configuration regis ters. power commander mode is enabled by connecting tp to vddcore. in reset - mode da9021/22 will do an initial otp read to setup the trim values. however, if the otp values loaded into these registers are not as required they can be updated during the su bsequent power commander mode programming sequences. note in power commander m ode gpi14/15 will be configured for hs - 2 - wire interface operation (with vddcore as the supply) and gpo13 will be configured as an output for nvdd_fault. any register writes or otp loads which can change this configuration are ignored until da9021/22 has exited from power commander m ode. after the initial otp read has completed , da9021/22 informs the system that it is waiting for a programming sequence by driving nvdd_fault low. the software running on the pc monitors nvdd_fault and responds by downloading the values into the configuration registers within da9021/22 . nvdd_fault is automatically released after the release register is loaded. there are two programming sequenc es performed in power commander mode . the first takes place between reset and powerdown mode and the second takes place between powerdown and system mode . two release registers are used support these two programming sequences:
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 58 of 142 ? 2017 dialog semiconductor a write to register r106 will end the first programming sequence a write to register r61 will end the second programming sequence during these programming sequences any registers can be written to in any order t he sequence will terminate after the appropriate release register has been written to. note to correctly configure da9021/22 registers, r10 to r105 should be programmed during the first sequence and fault log register (r9) bit vdd_fault has to be cleared by writing a 1. registers r14 and r43 to r61 should be programmed during the second sequence. the host can determine whether da9021/22 is in the first or second programming sequence by reading the fault log register. if a read of the fault log regist er bit vdd_fault returns a zero, then the da9021/22 is in the second programming sequence otherwise it is in the first. after the first programming sequence has been completed da9021/22 will be in powerdown mode . progressio n from this mode is determined by the values programmed for sys_en and auto_boot. if da9021/22 has been directed to progress from powerdown mode then it will drive pin nvdd_fault low for a second time to request that the software performs the second pro gramming sequence. once the second programming sequence has completed , the progress of the power - up sequence will be controlled by the values loaded during the programming sequence. the programmed configuration can be identified by reading the fuse registe r config_id. note during power commander m ode the fault detection status bit vdd_fault and the level at the related pin nvdd - fault do not match and do not indicate a low voltage level at vddout. an enabled shutdown from the 5 s assertion of gpio14/15 wil l be ignored during power commander m ode. 13.6 start up from no power mode 13.6.1 power - on - reset (npor) to guarantee the correct start - up of da9021/22 an internal power - on - reset npor (active low) is generated for the initial connection of either a supply or a good battery following a phase of not being supplied with sufficient power. to allow da9021/22 to start up even if the main battery is completel y discharged an internal v ddref rail is used to supply the charger blocks, comparators and the control logic. if no charger is present vdd _ ref is switched to the main battery while vddcore < vpor_upper the internal npor is asserted and da9021/22 will no t switch on (no - power mode ). when vddcore rises above vpor_upper the npor is negated, ldocore will be switched on, the bcd counter and fault_log register is reset and da9021/22 progresses to reset mode . when an external charger is detected (rising edge on vbus_det ) having no or only a deep discharged main battery connected to da9021/22 the internal charger, oscillator and bandgap are enabled and the whole otp trim block is read and stored to the registe r bank. if the supply voltage is below the charger detection threshold (vch_thr) after a debouncing period of t delay (10 ms to allow for de - bouncing of the input signal and the bandgap reference to settle) the device returns to reset mode. if the external charger is still present and the chg_att comparator flags a minimum of 100 mv head room from charger input vcenter to vddout , da9021/22 starts up the charger buck to supply vddout at the default current limit (loaded from otp) and starts supplying power to vddout, which enables an application start - up also with a flat battery. when vddout rises above vddout_min da9021/22 enters the powerdown mode . if this does not happen within 128 ms it will return to reset mode.
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 59 of 142 ? 2017 dialog semiconductor from powerdown mode da9021/22 will continue with powering up supplies if the power domain system was asserted via input port (or set via otp settings) and auto_boot was enabled (or a valid w ake up event has happened). the simplified flow diagram ( figure 34 ) shows the start - up events and an example of a typical initial sequence. if da9021/22 causes a reset from an under voltage detected within 10 s after releasing nreset (the start - up initiating supply is not strong enough to supply the application) da9021/22 will assert vdd_start inside the faultlog register and tempora ri ly disable auto_boot for the consecutive start - up (enabling only the batter y charger and start waiting for a valid wakeup event). only events generated from user inputs (gpis or nonkey) trigger a wakeup during this emergency charging but a flashing led connected to gpio 1 0 or 11 can be automatically enabled via control blink_frq. auto_boot is set back to its default value when the battery voltage vbat > vchg_bat - vchg_drop. a similar start - up to powerdown mode will be performed when a pre - charged battery i s inserted (vddout>vdd_fault_upper) following a state where da9021/22 has not been provided with any supply voltage as shown in figure 37 figure 34 : start - up from no - power to powerdown mode 13.6.2 application w akeup a valid w akeup event ( for example nonkey, sys_en, rtc - a larm or a trigger from gpios) initiates an application power up from powerdown mode . the wakeup from gpios (or selected alternat iv e features that use a shared gpi event) has to be enabled via gpix_mode and can be masked in addition with the related nirq mask . after a wakeup condition is detected the otp values for registers r14 and r43 to r61 are read . the se values re - configure the supplies and the sequencer timer. if the powerdown mode was reached by progressing from reset mode the power sequencer can also be started without waiting for a wakeup event if auto_boot was asserted. da9021/22 will assert the ext_wakeup signal toward the host proce ssor and if the power domains are not pre - enabled by otp the host processor has to control the further application start - up ( for example via the power domain enable lines). alternatively da9021/22 continues stand - alone powering up the otp enabled domains via the power domain sequencer. a start - up from reset mode powers up the application automatically only if sys_en is asserted from the host processor or was default set from otp. r e s e t r e a d o t p r e a d o t p v b u s _ d e t r i s i n g t d e l a y 1 0 m s t d e l a y 1 0 m s t d e l a y 1 0 m s c h a r g e r s u p p l i e s v d d o u t t d e l a y 1 0 m s v b u s > v c h _ t h r v d d o u t < v d d _ f a u l t _ l o w e r v d d o u t > v d d _ f a u l t _ u p p e r v d d o u t > v d d o u t _ m i n v d d o u t > v d d _ f a u l t _ u p p e r n o - p o w e r v d d c o r e > v p o r _ u p p e r v d d c o r e < v p o r _ l o w e r p o w e r - d o w n v d d o u t < v d d o u t _ m i n 1 2 8 m s t i m e o u t
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 60 of 142 ? 2017 dialog semiconductor table 36 : wakeup events signal / condition wakeup user event system event irq charger attach: e_vbus_det x x x charger removal: e_vbus_rem x x x vddout low prewarning: e_vdd_low x x x rtc alarm: e_alarm x x x sequencing finished: e_seq_rdy x x voltage comparator: e_comp_1v2 x x x pressed on key: e_nonkey x x x end of battery charging: e_chg_end x x x battery temperature: e_tbat x x manual adc result ready: e_adc_eom x x gpios: e_gpix x x x adc 4, 5, threshold: via gpi01 x x x sys_en, pwr_en, pwr1_en (passive to active transition): via gpio8, 9, 10 x x x hs - 2 - wire interface: via gpio14 x x x 13.6.3 power supply sequencer the start - up of da9021/22 supplies is performed with a sequencer that contains a programmable step timer, a variable id array of time slot pointers and f our predefined pointers (system_end, power_end, max_count and part_down). the sequencer is able to control up to 14 ids (3 buck converter s , 5 ldos, 4 feedback pin level controls, a wait id (gpi10) and a powerdown register), which can be grouped in three po wer domains. the power domains have configurable size and their borders are described by the location pointers system_end, power_end and max_count. the lowest level power domain system starts at step one and ends at the step that is described by the locat ion pointer system_end. the second level domain power starts at the successive step and ends at power_end. the third level domain power1 starts at the consecutive step and ends at max_count. the values of pointer s system_end, power_end and max_count are pr edefined in otp registers and should be configured to be system_end < power_end < max_count. the domain system by can be understood as a basic set of supplies that are mandatory to maintain the application in ( at least ) a standby/hibernate mode. if enabled via control otpread_en all supplies of da9021/22 and the sequencer timer (registers r14 and r43 to r61) are configured with the default value from otp before powering up the domain system. this will cause a reconfiguration of all suppli es that have been powered down with a preset voltage level. the second level domain power includes additional supplies required to power the main application and to set da9021/22 in to active mode. power1 can be understood as a subdomain of power that can be used for additional hardware/software initiated control of supply blocks during active mode ( for example for a sub - application like wlan or gsm baseband). supplies in domain power and power1 can be voltage pre - configured and by that sequentially cha nged during powering down, but will not be reset to their default values from otp unless there is a power - up from domain system. note running applications should be configured to active mode (domain power is up) and pointer power_end has to be at least one time slot higher than system_end.
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 61 of 142 ? 2017 dialog semiconductor all buck converter s and five ldos of da9021/22 have received a unique sequencer id. the power - up sequence is then defined by an otp register bank that contains a series of supplies (and other features) which are poi nting towards a sequencer time slot. several supplies can point in to the same time slot and by that will be enabled by the sequencer in parallel. time slots that have no ids pointing towards it are dummy steps that insert a configurabl e time delay (marked as d in figure 36 ) . supplies that are not pointing towards a sequencer time slot (with a step number greater than zero and less than max_count) will not be enabled by the power sequencer and have to be controlled individually by the host (via the power manager bus). figure 35 : content of otp power sequencer register cell during power - up the sequencer will start at step 0 where the sequencer behaviour is configured. if def_supply is asserted this includes an optional enabling of supplies (depending on the otp default settings of the supplies). if sys_en was asserted via port ( or otp) the sequencer will assert the ready signal (if selected for the feedback pin) and continue with step 1 which enables all supplies (features) from the otp register bank that are pointing towards step 1 . the sequencer will progress until it has reached the position of pointer system_end. now all supplies of the first power domain system are enabled and da9021/22 will release the ready signal and assert the e_seq_rdy interrupt. note it is recommended that supplies having an asserted enable bit in the otp are not controlled via ids of the power sequencer if def_supply is asserted (ids of these supplies should point into time slot 0). table 37 : power sequencer controlled actions action sequencer time slot comment step 0: configure power sequencer id_0 ldo1_en ldo1_step ldo3_en ldo3_step ldo7_en ldo7_step ldo9_en ldo9_step ldo10_en ldo10_step pd_dis pd_dis_step bcore_en buckcore_step bpro_en buckpro_step da9021 only bmem_en buckmem_step bperi_en buckperi_step da9021 only o t p s t e p 0 l s b i f a s s e r t e d a l l s u p p l i e s a r e s e t t o d e f a u l t m o d e w h e n p r o c e s s i n g s t e p 0 ( b e s i d e l d o c o r e ) 0 0 0 0 o t p s t e p 1 - 1 5 4 - b i t 0 0 0 0 0 : d u m m y ( d o n o t h i n g ) 1 C 1 5 : e n a b l e s u p p l y d e s c r i b e d b y i d 0 : n o a s s e r t i o n o f n r e s e t d u r i n g p o w e r - d o w n m o d e 1 : s t a r t r e s e t t i m e r f r o m s e l e c t e d e v e n t d u r i n g p o w e r i n g u p n o t u s e d n o t u s e d m s b c o n f i g u r e s e q u e n c e r
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 62 of 142 ? 2017 dialog semiconductor action sequencer time slot comment assert/release gp_fb2 gp_rise1_step assert/release gp_fb2 gp_rise2_step release/assert gp_fb2 gp_fall1_step release/assert gp_fb2 gp_fall2_step wait for active state at gpi 10 wait_step note ids ( for example supplies) not controlled by the sequencer should point into step 0. figure 36 : allocation of supplies (ids) into to the sequencer time slots to continue the sequencer checks for pwr_en to be asserted (via pwr_en port, register write or otp). when this is available the feedback signal ready will be asserted and supplies of domain power will be enabled sequentially. the sequencer stops at step power_end, releases the ready signal, asserts pwr_up, assert s the e_seq_rdy interrupt, starts the active mode of da9021/22 and releases an asserted ext_wakeup signal. a third power domain power1 can be enabled from pwr1_en (asserted via pwr1_en port, register write or otp). it enable s all consecutive supplies unti l step max_count has been reached, assert s pwr1_up and assert s the e_seq_rdy interrupt. the ready signal will be asserted as long as ids are processed (if enabled). the domain power1 offers no dedicated status indicator, but the end of its power - up sequenc e can be selected to start the reset timer. the delay between the steps of a sequence is controlled via a 4 - bit otp programmable timer unit seq_time with a default delay of 1285 s per step (minimum 32 s and max. 816 ms ). the delay time between individual supplies can be extended by leaving consecutive steps having no ids pointing to it ( d ummy supply), which provides an independent delay configured via control seq_dummy. the delay timers are configured with their default values from otp (r43) every time be fore powering up inside domain system. note during entering and leaving a power domain a 32 s delay will always be inserted . when da9021/22 is powering down , the sequencer will disable the supplies in reverse order and timing. supplies that are configured with a preset value (ldox_conf or buckxxx_conf bit is set) will not be disabled but configured with their preset voltage when the related time slot/id is l d o 1 l d o 3 l d o 7 p d _ d i s b u c k c o r e b u c k p r o b u c k m e m s e q u e n c e r i d ( o t p c e l l ) t i m e s l o t 0 1 2 3 d 5 d 7 d d 1 0 d d 1 3 1 4 1 5 4 p o w e r _ e n d s y s t e m _ e n d o s c p r o g r a m m a b l e 4 - b i t o t p s t a r t / s t o p s y s _ e n o t p e n a b l e m a x _ c o u n t s e q u e n c e r p a r t _ d o w n s y s t e m p o w e r p o w e r 1 p o w e r d o m a i n p a r t _ d o w n l d o 9 l d o 1 0 g p _ r a i s e 1 g p _ r a i s e 2 g p _ f a l l 1 g p _ f a l l 2 w a i t b u c k p e r i
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 63 of 142 ? 2017 dialog semiconductor pro cessed. if a domain contains at least one supply with an assigned preset, the power domain status indicator (pwr1_up, pwr_up) will not be released. otherwise the indicator will be released before the first supply of a power domain is disabled. if powering down was initiated from releasing pwr_en1 the sequencer will stop to modify the supplies whe re the domain pointer power_end reached. if pwr_en was disabled the domain power1 will be powered down followed by power until the sequencer reaches pointer system_ end. if sys_en was disabled the sequencer will process all ids lower than the actual pointer position down to step 0. if the low power mode was initiated by asserting the control register deep_sleep the sequencer will first power down power1 and power , then continue with system and stop when pointer part_down has been reached (part_down has to point into domain system). if sys_en was disabled the sequencer will process all ids lower than the actual pointer position down to step 0 (ignoring the part_down pointer). the sequencer asserts the e_seq_rdy interrupt on reaching the target pointer position. during processing step 0 all supplies ( except ldocore) can be set to their otp default state (if bit def_supply of step 0 is asserted), but the voltage levels are unchanged. due to the risk of in - rush currents on the battery the default enable of more than a single supply at step 0 is not recommended . asserting control register bit shutdown will first power down to step 0 and then force da9021/22 to reset m o de. da9021/22 features ( for example the out_ 32k output buffer or an a uto adc measurement ) can be disabled temporarily in powerdown mode via register pd_dis. the timing for processing pd_dis can be defined by the placement of pd_dis inside the sequence. f eatures asserted in pd_dis are re - enabled when pd_dis is processed during the next power - up sequence. if the ready signal is enabled, it will be asserted during processing the ids for powering down. note any reconfiguration of supplies from the host in active mode will not affect the domain status indicators (sys_up, and pwr_up). during sequencing (indicated from da9021/22 via signal ready or the e_seq_rdy interrupt) the host is not allowed to send addit ional power mode transition requests (via power manger interface or power domain enable lines). a conditional mode transition can be achieved using id wait_step . if pointing into the sequence the progress of an initiated mode transition can be synchroni s e d , for example with the state of a host that is indicated via a signal connected to gpi10. via gpio10_ mode a security time - out of 500 ms can be selected, that will trigger a power down to reset mode (including the assertion of wait_shut inside register fa ult_log) if e_gpi10 was not asserted until then. note in the case of a shutdown sequence towards reset mode (or powerdown from fault condition) any waiting from id wait_step will be skipped. when powering up from no_power mode id wait_step can alternativ ely be used as a configurable delay to allow the 32 khz oscillator to stabili s e before the ttl signal is provided at the out_ 32k output pin (see register wait_cont). the configuration at sequencer step 0 (nres_mode) enables the assertion of nreset at the end of a power down sequence and start s the reset timer during the consecutive powering up. this is also true for partial powerdown mode , when the sequencer powers down to pointer position part_down. the reset timer will start to run from the selected ev ent reset_event and release the nreset port after the reset timer has expired (see also description for powering up from no - power/reset mode.
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 64 of 142 ? 2017 dialog semiconductor note by connecting tp to vddcore da9021/22 can be configured to load control register default values from the h s 2 - wire interface instead from otp cells. during start - up the power sequencer will then assert pin nvdd_fault (set to zero) and wait until an external device has loaded default values into the control registers r10 to r106 after reset mode (if vdd_fault i s asserted), r14 and r43 to r61 when leaving powerdown mode (if vdd_fault is not asserted) via hs 2 - wire interface. the host has to clear the fault_log register after loading r10 to r106. when the last register has been loaded nvdd_fault will be released a nd the start - up sequence is continued. during this mode the settings of gpi14 and 15 will be ignored (pins are assigned as 2 - wire interface supplied from vddcore).
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 65 of 142 ? 2017 dialog semiconductor 14 register page control table 38 : register page control register address bit type label default description r0 to r128 page_con_p0 6:0 r 0000000 7 rw reg_page 0 0: s elects r egister r1 to r127 1: s elects r egister r129 to r255 14.1 register p age 0 14.1.1 power manager control and monitoring the status register reports the current value of the various signals at the time that it is read out. note all the status bits have the same polarity as their corresponding signals. table 39 : status_a register address bit type label default description r1 status_a 0 r nonkey 1 current nonkey state 4 r vbus_det 0 0: vbus voltage not detected (@ vbus pin) 1: vbus voltage detected 6 r vbus_sel 0 0: no valid charger at vbus (over voltage) 1: vbus charger selected 7 r vdat_det 0 0: usb host/hub detected (100 ma) 1: dedicated or host/hub charger detected table 40 : status_b register address bit type label default description r2 status_b 0 r chg_att 0 0: no charger attached (drop from vcenter to vddout < 100 mv) 1: charger attached (drop from vcenter to vddout > 100 mv) 1 r chg_pre 0 asserted if charger is in pre - charge mode 2 r chg_lim 0 0: charging as configured 1: charge current in constant current mode reduced to less than ichg_thd 3 r chg_end 0 0: battery charging 1: battery charging completed cleared automatically when starting charging/re - charging 4 r chg_to 0 0: battery charging timer ok or disabled 1: battery charging timeout caused charging finished cleared automatically when starting charging/re - charging and when loading tctr 5 r gp_fb2 0 status of gp_fp2 pin: configured from power sequencer
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 66 of 142 ? 2017 dialog semiconductor register address bit type label default description 6 r sequencing 0 0: sequencer is idle 1: sequencer is processing ids 7 r comp_det 0 0: comparator at adcin5 (1.2 v) not asserted 1: comparator asserted table 41 : status_c register address bit type label defaul t description r3 status_c 0 r gpi0 0 gpi0 level or adcin4 threshold indicator (1 when overriding high limit) 1 r gpi1 0 gpi1 level or adcin5 threshold indicator (1 when overriding high limit) table 42 : status_d register address bit type label default description r4 status_d 0 r gpi8 0 gpi8/sys_en level 1 r gpi9 0 gpi9/pwr_en level 2 r gpi10 0 gpi10/pwr1_en level 4 r gpi12 0 gpi12/ext_wakeup/ready level 5 r gpi13 0 gpi13 level 6 r gpi14 0 gpi14 level 7 r gpi15 0 gpi15 level the event registers hold information about events that have occurred in da9021/22 . events are triggered by a change in the status registers that contains the status of monitored signals. when an event bit is set in the event register the nirq signal is asserted (unless the nirq is masked by a bit in the irq mask register). the nirq is also masked during the power - up sequence and will not be released until the event registers have been cleared. the irq triggering event register is cleared from the host by writing a byte containing a 1 at the bit to be reset (bits written containing a 0 will leave the related event register bits unchanged thus avoiding acc i denta l ly clearing events that occur after the initial event register read ). new events that occur during clearing will be delayed before they are passed to the event register, ensur ing that the host controller does not miss them. table 43 : event_a register address bit type label default description r5 event_a 1 r e_vbus_det 0 vbus 4.4 v detection caused event 3 r e_vbus_rem 0 vbus removal caused event 4 r e_vdd_low 0 vddout less than vddout_mon threshold caused event 5 r e_alarm 0 rtc alarm caused event 6 r e_seq_rdy 0 sequencer reached stop position caused event 7 r e_comp_1v2 0 1.2 v comparator caused event
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 67 of 142 ? 2017 dialog semiconductor table 44 : event_b register address bit type label default description r6 event_b 0 r e_nonkey 0 nonkey caused event 3 r e_chg_end 0 battery charging complete caused event 4 r e_tbat 0 battery over/ under temp caused event 5 r e_adc_eom 0 adc manual conversion result ready caused event table 45 : event_c register address bit type label default description r7 event_c 0 r e_gpi0 0 gpi event according to active state setting/ adcin4 high / low threshold exceeded caused event 1 r e_gpi1 0 gpi event according to active state setting/ adcin5 high / low threshold exceeded caused event table 46 : event_d register address bit type label default description r8 event_d 0 r e_gpi8 0 gpi event according to active state setting/sys_en assertion caused event 1 r e_gpi9 0 gpi event according to active state setting/pwr_en assertion caused event 2 r e_gpi10 0 gpi event according to active state setting/pwr1_en assertion caused event 4 r e_gpi12 0 gpi event according to active state setting 5 r e_gpi13 0 gpi event according to active state setting 6 r e_gpi14 0 gpi event according to active state setting/event caused from host addressing hs - 2 - wire interface 7 r e_gpi15 0 gpi event according to active state setting
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 68 of 142 ? 2017 dialog semiconductor the nirq line will be released only when all events have been cleared from the host processor by writing a 1 to each asserted event bit (to prohibit missing events it is recommended to clear event bits individually). table 47 : fault_log register address bit type label default description r9 fault_log 0 r 1 r vdd_fault 1 power down by vddout under voltage detect 2 r vdd_start 0 power down by vddout under voltage detect within 10 s from releasing nreset 3 r temp_over 0 junction over temperature detected 4 r 5 r key_shut 0 power down by a long press of the nonkey or gpi14 and gpi15 in parallel 6 r nsd_shut 0 power down by assertion of port nshutdown 7 r wait_shut 0 power down by time out of id wait_step table 48 : irq_mask_a register address bit type label default description r10 irq_mask_a 0 r/w 1 reserved 1 r/w m_vbus_vld 0 mask vbus 4.4 v detection caused nirq 2 r/w 1 reserved 3 r/w m_vbus_rem 0 mask vbus removal caused nirq 4 r/w m_vdd_low 0 mask vddout low caused nirq 5 r/w m_alarm 0 mask rtc alarm caused nirq 6 r/w m_seq_rdy 0 mask sequencer reached stop position caused nirq 7 r/w m_comp_1v2 0 mask 1.2 v comparator caused nirq table 4 9 : irq_mask_b register address bit type label default description r11 irq_mask_b 0 r/w m_nonkey 0 mask nonkey caused nirq 1 r/w 1 reserved 2 r/w 1 reserved 3 r/w m_chg_end 0 mask battery charging complete caused nirq 4 r/w m_tbat 0 mask b attery over / under temp caused nirq 5 r/w m_adc_eom 0 mask adc manual conversion result
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 69 of 142 ? 2017 dialog semiconductor register address bit type label default description ready caused nirq 6 r/w 1 reserved 7 r/w 1 reserved table 50 : irq_mask_c register address bit type label default descrition r12 irq_mask_c 0 r/w m_gpi0 0 mask gpi caused/ adcin4 high / low threshold exceeded caused nirq 1 r/w m_gpi1 0 mask gpi caused/ adcin5 high / low threshold exceeded caused nirq, assert for ldo hardware control 2 r/w 1 reserved 3 r/w 1 reserved 4 r/w 1 reserved 5 r/w 1 reserved 6 r/w 1 reserved 7 r/w 1 reserved table 51 : irq_mask_d register address bit type label default description r13 irq_mask_d 0 r/w m_gpi8 0 mask gpi/sys_en caused nirq 1 r/w m_gpi9 0 mask gpi/pwr_en caused nirq 2 r/w m_gpi10 0 mask gpi/pwr1_en caused nirq 3 r/w 1 reserved 4 r/w m_gpi12 0 mask gpi caused nirq, assert for ldo hardware control 5 r/w m_gpi13 0 mask gpi caused nirq 6 r/w m_gpi14 0 mask gpi/hs - 2 - wire caused nirq 7 r/w m_gpi15 0 mask gpi caused nirq table 52 : control_a register address bit type label default description r14 control_a 0 r/w sys_en note 1 1 target status of power domain system: state of gpi8 (otp default ignored) or configuration from otp/pm interface (depended on setting at gpio_8_pin) 1 r/w pwr_en note 2 1 target status of power domain power: state of gpi9 (otp default ignored) or configuration from otp/pm interface (depended on setting at gpio_9_pin)
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 70 of 142 ? 2017 dialog semiconductor register address bit type label default description 2 r/w pwr1_en note 3 0 target status of power domain power1: state of gpi10 (otp default ignored) or configuration from otp/pm interface (depended on setting at gpio_10_pin) 4 r/w pm_i_v 0 nonkey, nshutdown, sys_en, pwr_en, pwr1_en are supplied from: 0: vddcore 1: vdd_io 6 r/w pm_o_type 0 nreset, nirq output are: 0: push - pull 1: open drain 7 r/w gpi_v 0 gpis (not configured as pm control inputs) are supplied from: 0: vddcore 1: vdd_io note 1 sys_en hardware control can be configured as high or low active via gpio_8_type note 2 pwr_en hardware control can be configured as high or low active via gpio_9_type note 3 pwr1_en hardware control can be configured as high or low a ctive via gpio_10_type table 53 : control_b register address bit type label default description r15 control_b 0 r/w buck_merge 0 has to be set if the outputs of buckcore and buckpro are merged towards a single coil; the control from buckpro registers is disabled 1 r/w act_diode 0 battery provides power 0: through internal active diode path (mandatory, if no external fet connected!) 1: through internal active diode and external power fet 2 r/w auto_boot 1 0: start - up of power sequencer after progressing from reset mode requires a valid wakeup event 1: pmic automatically starts power sequencer after progressing from reset mode 3 r/w otpread_en 1 0: otp read after powerdown mode disabled 1: power supplies are configured with ot p values when leaving powerdown mode 5 r/w write_mode 1 2 - wire multiple write mode (setting used for both 2 - wire interfaces) 0: page write mode 1: repeated write mode 6 r/w deep_sleep 0 if set to 1 da9021/22 goes to deep sleep mode (sequencer stops at pointer
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 71 of 142 ? 2017 dialog semiconductor register address bit type label default description part_down). the bit is cleared back to 0 automatically before powering up from powerdown mode 7 r/w shutdown 0 if set to 1 the sequencer powers down to reset mode the bit is cleared back to 0 automatically before leaving the reset mode table 54 : control_c register address bit type label default description r16 control_c 0 r/w pm_fb1_pin 0 0: feedback pin indicates ext_wakeup events (active high) 1: feedback pin is used as ready indicator, signalling ongoing power mode transitions (power sequencer and dvc) (active low) 1 r/w pm_fb2_pin 0 0: feedback pin indicates the status of domain power (active high pwr_up) 1: feedback pin is used as a configurable gp_fb indicator, that is asserted from the power sequencer 4:2 r/w debouncing 001 gpi, nonkey and nshutdown debounce time 000: no debounce time 001: 10.24 ms 010: 20.48 ms 011: 40.96 ms 100: 102.4 ms 101: 1024 ms 110: 2048 ms 111: 5120 ms 6:5 r/w blink_frq 11 gpo10/gpo11 flashing frequency 00: no blinking 01: every second 10: every two second s 11: every two seconds enabled during pre - charge mode and emergency charging 7 r/w blink_dur 0 gpo10/gpo11 flashing on - time 0:10 ms 1:40 ms
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 72 of 142 ? 2017 dialog semiconductor table 55 : control_d register address bit type label default description r17 control_d 2:0 4 r/w nonkey_sd 0 0: disables shutdown via nonkey 1: enables shutdown via nonkey 5 r/w gpi14_15_sd 0 0: disables shutdown via parallel assertion of gpi14 and gpi15 1: enables shutdown via gpi14 & gpi15 6 reserved 0 table 56 : pd_dis register address bit type label default description r18 pd_dis 0 r/w gpio_pd 0 0: gpio extender enabled during powerdown 1: auto - disable of features configured as gpio pins during powerdown mode and force the detection of a pending active state on gpis by re - enabling the pin through a passive state of the related gpi status register 1 r/w gp - adc_pd 1 0: adc/tsi measurement s continue during powerdown as configured 1: auto - disable auto measurements on a4, a5, a6, a7(tsi) and manual measurement on all channels during powerdown mode; if no auto measurements for charging and on a0 are required switch off the adc completely 2 r/w pm - if_pd 1 0: power manager interface not disabled during powerdown 1: auto - disable of power manager interface during powerdown mode 3 r/w hs - 2 - wire _pd 1 0: hs - 2 - wire not disabled during powerdown 1: auto - disable of hs - 2 - wire interface during powerdown mode 4 r/w chg_pd 0 0: enables battery charging during powerdown 1: auto - disable battery charging during powerdown mode 5 r/w 1 reserved 6 r/w out_32k_pd 1 0: enables out_32k during powerdown 1: auto - disable out_32k output buffer during powerdown mode and auto - enable during power - up from no - power mode when executing this id 7 r/w pm - cont_pd 0 0: sys_en, pwr_en, pwr1_en enabled during powerdown 1: auto - disable of sys_en, pwr_en
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 73 of 142 ? 2017 dialog semiconductor register address bit type label default description and pwr1_en during powerdown mode and force the detection of a pending active state by re - enabling the pin through a passive state of the related gpi status register table 57 : interface register address bit type label default description r19 interface 0 r37 if_type 0 0: power manager interface is 4 - wire 1: power manager interface is 2 - wire 1 r cpol 0 4 - wire interface clock polarity 0: sk is low during idle 1: sk is high during idle 2 r cpha 0 4 - wire interface clock phase (se e table 34 : 4 - wire clock configurations ) 3 r r/w_pol 1 4 - wire : read/write bit polarity 0: host indicates reading access via r/w bit = 0 1: host indicates reading access via r/w bit = 1 4 r ncs_pol 1 4 - wire chip select polarity 0: ncs is low active 1: ncs is high active 7:5 r if_base_addr 100 3 msb of 2 - wire control interfaces base address xxx10000 10010000 = 0x90 write address of pm 2 - wire interface 10010001 = 0x91 read address of pm 2 - wire interface 10010010 = 0x92 write address of hs - 2 - wire interface 10010011 = 0x93 read address of hs - 2 - wire interface
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 74 of 142 ? 2017 dialog semiconductor table 58 : reset register address bit type label default description r20 reset 5:0 r/w reset_timer 000101 000000: reset disabled 000001: 1.024 ms 000010: 2.048 ms 000011: 3.072 ms 000100: 4.096 ms 000101: 5.120 ms . 011110: 30.720 ms 011111: 31.744 ms 100000: 32.768 ms 100001: 65.536 ms 100010: 98.304 ms .. 111101: 983.040 ms 111110: 1015.808 ms 111111: 1048.576 ms 7:6 r/w reset_event 01 reset timer started by 00: ext_wakeup 01: sys_up 10: pwr_up 11: pwr1_up (internal signal)
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 75 of 142 ? 2017 dialog semiconductor 15 gpio extender the da9021/22 includes a gpio extender that offer s vddout - tolerant (5.5 v max) general purpose input/output pins; each controlled by registers from the host. note the input voltage has to be lower than the vdd _ io level the gpio ports are pin - shared with ports from gp - adc, hs - 2 - wire interface and signals from the power manager and can be individually assigned. configuration settings and events from several gpix ports are shared with alternative features. if , for example, adcin5 was selected overriding the configured thresholds this will trigger a gpi1 event that generate s a maskable gpi1 interrupt. the gpi active h igh l ow setting from gpiox_type register and the selection of supply rail (and pull - up resistor) is also valid for the alternative port features selected via gpiox_pin ( for example sys_en, pwr_en and pwr1_en). the same applies to gpiox_mode to enable triggering a w akeup event (adcin4, adcin5, sys_en, pwr_en, pwr1_en, hs - 2 - wire interface) for the alternat iv e features. in active and powerdown mode s the gpio e xtender can continuously m onitor the level of ports that are selected as general purpose inputs. gpis are supplied from the internal rail vddcore or vdd_io and can be configured to trigger events in active high or active low mode. the input signals can be debounced or directly chan ge the state of the assigned status register gpix to high or low. whenever the status has changed to its configured active state (edge sensitive) the assigned event register is set and the nirq signal is asserted (unless this nirq is masked inside the nirq mask register). gpi0 13 will generate a system wakeup if debouncing is enabled. in debouncing off mode gpi 12 enables/disables ldo9, the minimum enable time is 100 s. events on gpi10 can be used to control the progress of the power sequencer. processing id wait_step will cause the sequencer to wait until gpi 10 changes into active state. if defined as an output the gpo can be configured as open - drain or push - pull. the supply rail is vdd_io. when selecting vdd_io in open - drain mode, there is an internal pu ll - up resistor against this rail, otherwise an external pull - up resistor towards the target voltage level is required. the output state will be assigned as configured by the gpio register bit gpiox_mode. gpo 10 is a high power gpo port, where the maximum sink current is rated to be 15 ma and the maximum source current is 4 ma. this enables driving leds with optional rtc timer controlled flashing. gpo 14 and 15 are high power gpo ports able to sink up to 30 ma and include an optional pwm control. the pwm c ontrol can also be made to dim the brightness between its current value and a new va lue at a rate of 32 ms per step.
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 76 of 142 ? 2017 dialog semiconductor 15.1 gpio control table 59 : gpio0 to 1 register address bit type label default description r21 gpio_0 - 1 1:0 r/w gpio0_pin 00 pin assigned to 00: adcin4 01: gpi 10: gpo (open drain) 11: gpo (push - pull) 2 r/w gpio0_type 0 0: gpi: active low gpo: supplied from vdd_io/internal pull - up in open - drain mode 1: gpi: active high gpo: supplied from vdd_io/external pull - up in open - drain mode 3 r/w gpio0_ mode 1 0: gpi/adcin4: debouncing off gpo: sets output to low level 1: gpi/adcin4: debouncing on and generate wakeup gpo: sets output to high level 5:4 r/w gpio1_pin 00 pin assigned to 00: adcin5/1.2 v comparator 01: gpi (ldo4 hardware control) 10: gpo ( o pen drain) 11: gpo ( p ush - pull) 6 r/w gpio1_type 0 0: gpi: active low gpo: supplied from vdd_io/internal pull - up in open - drain mode 1: gpi: active high gpo: supplied from vdd_io/external pull - up in open - drain mode 7 r/w gpio1_ mode 1 0: gpi/adcin5: debouncing off, set ldo4_en when gpi transfers to active state (reset when gpi gets to passive state) gpo: sets output to low level 1: gpi: debouncing on, no ldo4_en control adcin5: debouncing on and generate wakeup gpo: sets output to high level
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 77 of 142 ? 2017 dialog semiconductor table 60 : r eserved register address bit type label default description r22 , r23, r24 7:0 r/w 11101110 reserved table 61 : gpio8 to 9 register address bit type label default description r25 gpio_8 - 9 1:0 r/w gpio8_pin 01 pin and status register bit assigned to 00: sys_en (requires gpio8_ mode = 1) 01: gpi 10: gpo (open drain) 11: gpo (push - pull) 2 r/w gpio8_type 0 0: gpi/sys_en: active low gpo: supplied from vdd_io/internal pull - up in open - drain mode 1: gpi/sys_en: active high gpo: supplied from vdd_io/external pull - up in open - drain mode 3 r/w gpio8_ mode 1 0: gpi: debouncing off gpo: sets output to low level 1: gpi/sys_en: debouncing on and generate wakeup gpo: sets output to high level 5:4 r/w gpio9_pin 01 pin and status register bit assigned to 00: pwr_en (requires gpio9_ mode = 1) 01: gpi 10: gpo (open drain) 11: gpo (push - pull) 6 r/w gpio9_type 0 0: gpi/pwr_en: active low gpo: supplied from vdd_io/internal pull - up in open - drain mode 1: gpi/pwr_en: active high gpo: supplied from vdd_io/external pull - up in open - drain mode 7 r/w gpio9_ mode 1 0: gpi: debouncing off gpo: sets output to low level 1: gpi/pwr_en debouncing on and generate wakeup gpo: sets output to high level
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 78 of 142 ? 2017 dialog semiconductor table 62 : gpio10 to 11 register bit type label default description r26 gpio_10 - 11 1:0 r/w gpio10_pin 01 pin and status register bit assigned to 00 : pwr1_en (requires gpio10_ mode = 1) 01 : gpi 10: gpo (open drain) 11: gpo (push - pull) 2 r/w gpio10_type 0 0: gpi/pwr1_en: active low gpo: supplied from vdd_io/internal pull - up in open - drain mode 1: gpi/pwr1_en: active high gpo: blinking from rtc counter, supplied from vdd_io/ external pull - up in open - drain mode 3 r/w gpio10_ mode 1 0: gpi: debouncing off gpo: sets output to low level (active low for blinking) note 1 1: gpi/pwr1_en: debouncing on and generate wakeup, time out from processing id wa it_step after 500 ms gpo: sets output to high level (active high for blinking) note 1 7 :4 r/w 11 10 reserved note 1 active low/high selection available from bc silicon table 63 : gpio12 to 13 register address bit type label default description r27 gpio_12 - 13 1:0 r/w gpio12_pin 11 pin and status register bit assigned to 00: gp_fb1 (ext_wakeup/ready) 01: gpi (ldo9 hardware control) 10: gpo (open drain) 11: gpo (push - pull) 2 r/w gpio12_type 0 0: gpi: active low gpo/gp_fb1: supplied from vdd_io/internal pull - up for open - drain 1: gpi: active high gpo/gp_fb1: supplied from vdd_io/external pull - up in open - drain mode 3 r/w gpio12_ mode 0 0: gpi: debouncing off, set ldo9_en when gpi transfers to active state (reset when gpi gets to passive state) gpo: sets output to low level 1: gpi: debouncing on, no ldo9_en control gpo: sets output to high level 5:4 r/w gpi o13_pin 00 pin assigned to 00: nvdd_fault 01: gpi
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 79 of 142 ? 2017 dialog semiconductor register address bit type label default description 10: gpo (open drain) 11: gpo (push - pull) 6 r/w gpio13_type 0 0: gpi: active low gpo/nvdd_fault: supplied from vdd_io/internal pull - up for open - drain 1: gpi: active high gpo/nvdd_fault: supplied from vdd_io/external pull - up in open - drain mode 7 r/w gpio13_ mode 0 0: gpi: debouncing off gpo: sets output to low level 1: gpi: debouncing on and generate wakeup gpo: sets output to high level table 64 : gpio14 to 15 register address bit type label default description r28 gpio_14 - 15 1:0 r/w gpio14_pin 11 pin assigned to 00: data (assigns gpio15_pin to clk) 01: gpi 10: gpo (open drain, pwm control) 11: gpo (push - pull) 2 r/w gpio14_type 0 0: gpi: active low gpo: supplied from vdd_io/internal pull - up in open - drain mode 1: gpi: active high gpo: supplied from vdd_io/external pull - up in open - drain mode 3 r/w gpio14_ mode 0 0: gpi: debouncing off, no wakeup hs - 2 - wire : no wakeup gpo: sets output to low level (active low for blinking) 1: gpi:debouncing on and generate wakeup hs - 2 - wire : generate wakeup when interface was accessed gpo: sets output to high level (active high for blinking) 5:4 r/w gpio15_pin 11 pin assigned to 00: clk (see gpio14_pin) 01: gpi 10: gpo (open drain, pwm control) 11: gpo (push - pull)
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 80 of 142 ? 2017 dialog semiconductor register address bit type label default description 6 r/w gpio15_type 0 0 : gpi: active low gpo: supplied from vdd_io/internal pull - up in open - drain mode data/clk supplied from vdd_io ( note 1 ) : gpi: active high gpo: supplied from vdd_io/external pull - up in open - drain mode data/clk supplied from vdd_io 7 r/w gpio15_ mode 0 0 : gpi: debouncing off gpo: sets output to low level (active low for blinking) note 2 1: gpi: debouncing on and generate wakeup gpo: sets o utput to high level (active high for blinking) note 2 note 1 in power commander mode the hs - 2 - wire interface is always supplied from vddcore note 2 active low/high selection available from bc silicon
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 81 of 142 ? 2017 dialog semiconductor 16 power supply sequencer the start - up of da9021/22 supplies is performed with a sequencer. the sequencer is able to control up to 14 ids (3 buck converter, 5 ldos, 4 feedback pin level controls, a wait id and a powerdown register), which can be grouped in three power domains. the power sequences for each domain have configurable size. figure 37 : typical p ower - up timing n p o r _ u p p e r p o w e r - u p p w r 1 _ e n s y s _ e n p w r _ e n e x t _ w a k e u p n o n k e y v d d c o r e v d d o u t 3 . 6 v ( f r o m c h a r g e r b u c k ) v d d _ r e f r e g i s t e r s l o a d e d f r o m o t p n v d d _ f a u l t s e q 1 s e q 2 s e q 3 w a i t f o r p w r _ e n p w r _ u p w a i t f o r p w r 1 _ e n d e b o u n c i n g ( 1 0 m s d e f a u l t ) n r e s e t s t a r t r e s e t t i m e o t p r e a d f i n i s h e d s e q 1 + s e q 2 + s e q 3 = 1 5 s t e p 1 m s t o 1 s w a i t f o r s y s _ e n = 3 2 u s
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 82 of 142 ? 2017 dialog semiconductor figure 38 : power mode transitions n o p o w e r m o d e r e s e t m o d e p o w e r - d o w n m o d e d o m a i n s y s t e m d o m a i n p o w e r o t p r e a d ( w i t h 1 0 m s d e b o u n c i n g ) o t p r e a d ( w i t h 1 0 m s d e b o u n c i n g ) c h a r g e r p r o v i d e s v d d o u t o t p r e a d s u p p l i e s a n d s e q u e n c e r t i m e r e x t _ w a k e u p = 1 s y s _ u p = 1 p r o c e s s s e q u e n c e r i d s u p t o p o i n t e r s y s t e m _ e n d p r o c e s s s e q u e n c e r i d s d o w n t o p o i n t e r p a r t _ p o w n o r s t e p 0 s y s _ u p = 0 : n o s u p p l y i s p r e s e t 1 : s y s t e m s u p p l i e s a r e p r e s e t p w r _ u p = 1 p r o c e s s s e q u e n c e r i d s u p t o p o i n t e r p o w e r _ e n d w a k e u p e v e n t n o n k e y s y s _ e n , p w r _ e n , p w r 1 _ e n a s s e r t e d e _ g p i _ x ( i n c l . a d c t h r e s h o l d ) v o l t a g e c o m p a r a t o r 1 . 2 v p e n d o w n d e t e c t i o n i d _ f l o a t ( f a l l i n g e d g e ) v b u s a t t a c h / r e m o v a l e n d o f b a t t e r y c h a r g i n g v d d o u t l o w w a r n i n g r t c a l a r m a c c e s s o f 2 - w i r e i f v d d o u t > v d d o u t _ m i n v d d c o r e > v p o r _ u p p e r v d d c o r e < v p o r _ l o w e r n v d d _ f a u l t o r t e m p _ o v e r o r t w d _ e r r o r o r n s d _ s h u t o r k e y _ s h u t o r w a i t _ s h u t a s s e r t e d s h u t d o w n = 1 ' p w r _ e n = 1 ' n v d d _ f a u l t o r t e m p _ o v e r o r t w d _ e r r o r o r n s d _ s h u t o r k e y _ s h u t o r w a i t _ s h u t a s s e r t e d s y s _ e n = 0 ' d e e p _ s l e e p = 1 ' s h u t d o w n = 1 ' p r o c e s s s e q u e n c e r i d s d o w n t o p o i n t e r s y s t e m _ e n d p w r _ u p = 0 : n o s u p p l y i s p r e s e t 1 : p o w e r s u p p l i e s a r e p r e s e t n v d d _ f a u l t o r t e m p _ o v e r o r t w d _ e r r o r o r n s d _ s h u t o r k e y _ s h u t o r w a i t _ s h u t a s s e r t e d s y s _ e n = 0 ' p w r _ e n = 0 ' d e e p _ s l e e p = 1 ' s h u t d o w n = 1 ' a c t i v e m o d e w a i t f o r ? a l i v e s i g n a l f r o m h o s t p r o c e s s s e q u e n c e r i d s u p t o p o i n t e r m a x _ c o u n t p w r 1 _ e n = 1 ' d o m a i n p o w e r 1 p r o c e s s s e q u e n c e r i d s d o w n t o p o i n t e r p o w e r _ e n d n v d d _ f a u l t o r t e m p _ o v e r o r t w d _ e r r o r o r n s d _ s h u t o r k e y _ s h u t o r w a i t _ s h u t a s s e r t e d s y s _ e n = 0 ' p w r _ e n = 0 ' p w r 1 _ e n = 0 ' d e e p _ s l e e p = 1 ' s h u t d o w n = 1 ' l d o c o r e b a n d - g a p 3 2 k o s c i l l a t o r b c d c o u n t e r v d d o u t , v b u s _ p r o t a n d v d d c o r e c o m p a r a t o r s r e s e t s h u t d o w n e x p i r e o v e r - t e m p e r a t u r e v d d c o r e c o m p a r a t o r s r e s e t f a u l t l o g a n d b c d - c o u n t e r l d o c o r e b a n d - g a p 3 2 k o s c i l l a t o r b c d c o u n t e r v d d o u t , v b u s _ p r o t a n d v d d c o r e c o m p a r a t o r s s u p p l i e s w i t h p r e s e t v o l t a g e n o n - d i s a b l e d f e a t u r e s i n t e r n a l o s c i l l a t o r ( i f g p - a d c o r a b u c k i s e n a b l e d n o t i n s l e e p m o d e ) l d o c o r e b a n d - g a p 3 2 k o s c i l l a t o r b c d c o u n t e r v d d o u t , v b u s _ p r o t a n d v d d c o r e c o m p a r a t o r s s u p p l i e s n o n - d i s a b l e d f e a t u r e s i n t e r n a l o s c i l l a t o r ( i f g p - a d c o r a b u c k i s e n a b l e d n o t i n s l e e p m o d e ) l d o c o r e b a n d - g a p 3 2 k o s c i l l a t o r b c d c o u n t e r v d d o u t , v b u s _ p r o t a n d v d d c o r e c o m p a r a t o r s s u p p l i e s i n t e r n a l o s c i l l a t o r v d d o u t > v d d _ f a u l t _ u p p p e r p o w e r i n g d o w n p o w e r i n g u p v d d o u t > v d d _ f a u l t _ u p p p e r v d d o u t > v d d o u t _ m i n 1 2 8 m s t i m e o u t v b u s > v c h _ t h r v b u s _ d e t r i s i n g n v d d _ f a u l t o r t e m p _ o v e r o r t w d _ e r r o r o r n s d _ s h u t o r k e y _ s h u t o r w a i t _ s h u t a s s e r t e d s y s _ e n = 0 ' p w r _ e n = 0 ' d e e p _ s l e e p = 1 ' s h u t d o w n = 1 ' e x t _ w a k e u p = 0
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 83 of 142 ? 2017 dialog semiconductor 16.1 power sequencer table 65 : id 0 to 1 register address bit type label default description r29 id_0_1 0 r/w n res _mode 1 0: no assertion of nreset during powerdown mode 1: assert nreset when entering powerdown mode (release after leaving powerdown mode) 1 r/w def_supply 0 when asserted all supplies (beside ldocore) are enabled/disabled from otp default mode 2 r/w 0 reserved 7:4 r/w ldo1_step 1001 power sequencer time slot 9 table 66 : id 2 to 3 register address bit type label default description r 30 id_2_3 3:0 r/w 0000 reserved 7:4 r/w ldo3_step 1000 power sequencer time slot 8 table 67 : reserved register address bit type label default description r31 3:0 r/w 0000 reserved 7:4 r/w 0000 reserved table 68 : id 6 to 7 register address bit type label default description r32 id_6_7 3:0 r/w 0000 reserved 7:4 r/w ldo7_step 0000 not controlled by power sequencer table 69 : id 8 to 9 register address bit type label default description r33 id_8_9 3:0 r/w 0000 reserved 7:4 r/w ldo9_step 0000 not controlled by power sequencer table 70 : id 10 to 11 register address bit type label default description r34 id_10_11 3:0 r/w ldo10_step 0000 not controlled by power sequencer 7:4 r/w pd_dis_step 0101 power sequencer time slot 5
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 84 of 142 ? 2017 dialog semiconductor table 71 : id 12 to 13 register address bit type label default description r35 3:0 r/w 0000 reserved 7:4 r/w 0000 reserved table 72 : id 14 to 15 register address bit type label default description r36 id_14_15 3:0 r/w buckcore_step 0001 power sequencer time slot 1 7:4 r/w buckpro_step 0111 power sequencer time slot 7 table 73 : id 16 to 17 register address bit type label default description r37 id_16_17 3:0 r/w buckmem_step 0000 not controlled by power sequencer 7:4 r/w 0000 reserved table 74 : id 18 to 19 register address bit type label default description r38 id_18_19 3:0 r/w gp_rise1_step 0000 not controlled by power sequencer 7:4 r/w gp_rise2_step 0000 not controlled by power sequencer table 75 : id 20 to 21 register address bit type label default description r39 id_20_21 3:0 r/w gp_fall1_step 0000 not controlled by power sequencer 7:4 r/w gp_fall2_step 0000 not controlled by power sequencer table 76 : seq status register address bit type label default description r40 seq_status 3:0 r/w wait_step 0000 not controlled by power sequencer 7:4 r/w seq_pointer 0000 actual pointer position (time slot) of power sequencer table 77 : seq_a register address bit type label default description r41 seq_a 3:0 r/w system_end 0110 otp pointer to last supply of domain system 7:4 r/w power_end 1001 otp pointer to last supply of domain power
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 85 of 142 ? 2017 dialog semiconductor table 78 : seq_b register address bit type label default description r42 seq_b 3:0 r/w max_count 1001 otp pointer to last supply of domain power1 7:4 r/w part_down 0100 otp pointer for partial powerdown mode table 79 : seq timer register address bit type label default description r43 seq_timer 3:0 r/w seq_time 0011 0000: 32 s 0001: 64 s 0010: 96 s 0011: 128 s 0100: 160 s 0101: 192 s 0110: 224 s 0111: 256 s 1000: 288 s 1001: 384 s 1010: 448 s 1011: 512 s 1100: 1.024 ms 1101: 2.048 ms 1110: 4.096 ms 1111: 8.192 ms 7:4 r/w seq_dummy 0011 0000: 32 s 0001: 64 s 0010: 96 s 0011: 128 s 0100: 160 s 0101: 192 s 0110: 224 s 0111: 256 s 1000: 288 s 1001: 384 s 1010: 448 s 1011: 512 s 1100: 1.024 ms 1101: 2.048 ms 1110: 4.096 ms 1111: 8.192 ms
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 86 of 142 ? 2017 dialog semiconductor 17 voltage r egulators three types of low dropout regulators are integrated on the da9021/22 , each optimised for performance depending on the most critical parameter of the circuitry supplied. for high performance analogue supplies ( for example audio) the regulators have been designed to offer high psrr and low noise, for the digital supplies psrr is relaxed saving quiescent current and for the pmic core/rtc supplies quiescent current has been optimised as the most important performance parameters. the regulators employ dialog semiconductors smart mirror? dynamic biasing, removing the need for a low power operating mode and associated software or hardware overhead. smart mirror? technology guarantees a high phase margin within the regulator control loop and has been designed to offer stable performance with small output capacitances over a wide range of output currents. the circuit technique offers significantly higher gain bandwidth performance than con ventional designs, enabling higher power supply rejection performance at higher frequencies. psrr is also maintained across the full operating current range however quiescent current consumption is scaled to demand giving improved efficiency when current d emand is low. figure 39 : smart m irror ? v oltage r egulator the regulator output voltages are fully programmable via the control interface allowing optimisation of the complete system for maximum performance and power efficiency. for security reasons the re - programming of output voltages from the control interfaces can be disabled. the default output voltage is loaded from after start - up from otp. a power saving mode is not required for the ldos due to the use of dynamic biasing in the ldo internal circuitry, so when operating at low current , the quiescent current taken by the regulator is automatically minimised. ldo1 to ldo10 can optionally be supplied from a buck output (vdd < 2.8 v) , i n this mode some specification parameters wi ll change. ldo1 to ldo10 can be controlled inside the power manager sequence. if enabled at sequencer step 0 (bit def_supply) supplies can be default enabled via otp whenever the sequencer passes step 0 (otp settings are used). to limit the battery rush c urrent it is recommended that no more than one supply (including bucks) is enabled at step 0 when powering down ( for example to powerdown mode) sequencer controlled supplies can be pre - configured with a new target voltage (ldox_conf bit is set). if ldox_co nf was asserted in
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 87 of 142 ? 2017 dialog semiconductor parallel with ldox_en , the supply enable is deferred until the sequencer is processing the related id. the previous output voltage and enable state will be kept unchanged until the sequencer processes the related time slot/id during powe ring down (ignoring any assertions of vldox_go while ldox_conf is high). before wakeup from powerdown mode (processing time slots from domain system) the sequencer will reset the ldox_conf bits and, if enabled via setting otpread_en, configure all regulato rs with their default voltage values from otp . the regulators can also be enabled/disabled/configured via the power manager and hs - 2 - wire interface when the da9021/22 is in the active state. voltage transitions on ldos including dvc will always be ramped . note powering down to reset mode will automatically disable all regulators except for ldo1. ldo 3 includes dynamic dvc control to enable power savings on peripheral domains: the output voltage is programmable over the power manager bus in 25 mv steps. the output voltage ramp step size is 6.25 mv/ s while slewing. if the feedback signal is configured to be ready this line is asserted while slewing. the dvc control is handled by the following registers: output voltage setting register vldo3 to configure the new target voltage . activate bit vldo3_go will implement the changes on the ldo output (also used from the sequencer for deferred voltage changes). after being started da9021/22 will block (not accept any re - programming of) the related voltage settin g registers until slewing has been finished. if selected the ready signal will be asserted during ramping. ldo9 includes an optional hardware enable/disable via gpio12 by selecting the gpi feature with debouncing off. after detecting an e_gpi1, e_gpi2 or e_gpi12 event da9021/22 will configure ldo4_en, ldo5_en or ldo9_en by the status of gpi1, gpi2 or gpi9 and the event bit e_gpi1, e_gpi2 or e_gpi12 is automatically cleared. a parallel write access to ldo4_en, ldo5_en or ld09_en from the control interface s or the power sequencer is delayed and will later override the hardware configuration. note it is recommended to assert the irq mask bit of gpios, which are configured for ldo hardware control, to prevent the host being disturbed by irq strobes from the automatically cleared events . disabling regulators ldo1, 2 and 5 can switch off their pull down resistor, which is required for usage in parallel to an alternate supply. 17.1 da9021/22 c ore r egulator ldocore the ldocore will be used for running the da9021/2 2 internal rtc module, internal state machine, gpio pins with comparators, bias, reference, gpadc, otp and power manager registers. it is supplied by the battery switch either from an external supply or vbat.
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 88 of 142 ? 2017 dialog semiconductor 18 dc/dc buck c onverters da9021/22 includes three dc - dc buck converters with dynamic v oltage c ontrol (dvc). DA9022 also includes three dc - dc buck converters, two with dvc and one with fixed output voltage (programmable from otp). the output voltages are fully programmable via the control interface a llowing optimisation of the complete system for maximum performance and power efficiency. for security reasons the reprogramming of output voltages from the control interfaces can be disabled via control v_lock. note powering down to reset mode will autom atically disable all buck converters. figure 40 : dc - dc buck c onverter 18.1 converters b uckcore, buckpro (da9021 only) and buckmem with dvc these converters are high efficiency , synchronous , step down regulators operating at a high frequency (2 mhz) and supplying individual output voltages with 3% accuracy. default output voltage is loaded from otp and can be set in 25 mv steps. dvc allows the following features: the buck converter output v oltage to be programmable over the power manager bus in 25 mv steps. the output voltage ramp step size is 6.25 mv/ s while slewing. if the feedback signal is configured to be ready this line is asserted while slewing. output voltages below 0.725 v will on ly be supported in pulse f requency m odulation (pfm) mode. during a voltage reduction below 0.725 v the slew rate control ends at 0.725 v and the buck mode is automatically changed to sleep mode (with reduced maximum current capability). the timing of volta ge transitions between 0.5 v and 0.725 v depends on the load. the dvc is handled by the following registers: output voltage setting register vbcore, vbpro and vbmem to configure the new target voltage . activate bit vb_core_go, vb_pro_go and vb_mem_go will implement the changes at the buck output (also used from the sequencer for deferred voltage changes). after being started da9021/22 will block (not accept any re - programming of) the related voltage se tting registers until slewing has been finished. if selected the ready signal will be asserted during ramping. the supply current during pwm (synchronous rectification) operation is in the order of 2.2 ma (quiescent current and charge/discharge current) an d drops to <1a in shutdown. switching frequency is chosen to be high enough to allow the use of a small 4.7 h inductor. d c d c c o n v e r t e r ( 2 m h z ) d r v c t r l v b u c k v f b i s e n s e c o u t c n t r l v d d ( 2 . 8 . . . 5 . 0 v ) s l e e p _ e n d a c r e f p o w e r - e n 4 . 7 u h
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 89 of 142 ? 2017 dialog semiconductor the operating mode of the b uck converter is selected via the buck control register bits. the buck converter can be forced to operate i n either synchronous mode or sleep mode. additionally the buck converter has an automatic mode where it will switch between synchronous and sleep mode depending on the load current. in sleep mode the buck converter works in pfm mode. an internal zero cross ing comparator is used to time the turn - off of the nfet, thereby removing the need for an external schottky diode. all buck converters can be controlled via an id from the power manager sequencer. if enabled at sequencer step 0 (bit def_supply) buck conver ters can be default enabled via otp whenever the sequencer passes step 0 (otp default settings are used). to limit the battery rush current it is recommended that not more than a single supply (including ldos) is enabled at step 0 during powering down supp lies can be pre - configured with a new target value (bxxx_conf bit is set). if bxxx_conf i s asserted in parallel with buckx_en , the supply enable is deferred until the sequencer is processing the related id. the output voltage and enable state will be kept unchanged until the sequencer processes the related time slot/id during powering down (ignoring any assertions of vb_xxx_go while bxxx_conf is high). when powering up from powerdown mode (processing time slots in domain system) the sequencer will configur e bucks with their default voltage values from otp and by that reset the buckxxx_conf bits. the bucks can also be enabled/disabled/configured via the power manager and hs - 2 - wire interface when the da9021/22 is in the active state. voltage transitions on bucks including dvc will always be ramped. disabled bucks buckcore, buckpro and buckmem can switch off their pull down resistor (required for usage in parallel to an alternative supply). note powering down to reset mode will automatically disable all buck converters. the converter buckcore can additionally be merged with buckpro towards a single dc - dc converter with a maximum output current of 1.4 a. the routing of the switcher output pins towards the common inductor has to be symmetrical and the feed back signal vbuckpro should be connected to gnd (if pro_pd_dis is asserted buckcoreore can alternativ e ly be connected to vbuckcore). the inductor and the output capacitor have to be selected according to the intended increased output current . note the configuration controls of buckpro are automatically disabled by asserting the bit buck_merge and the selected current limits of buckcore will be automatically doubled
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 90 of 142 ? 2017 dialog semiconductor . figure 41 : buckcore merged with buckpro 18.2 converter buckperi with otp programmable o utput v oltage and b ypass mode (DA9022 only) the buckperi c onverter is a high efficiency synchronous step down regulator operating at a high frequency (2 mhz). the default output voltage is loaded from otp a nd can be set from 1.8 v to 3.6 v in 50 mv steps from 1.8 to 3.0 v and 100 mv steps from 3.0 v to 3.6 v . note changes to the output voltage have to be executed in disabled mode as this regulator does not offer dvc the supply current during pwm mode operation is in the order of 3 ma (quiescent current and charge/discharge current) and drops to < 1 a in shutdown. switching frequency is chosen to be high enough to allow the use of a small 2.2 h to 4.7 h inductor. the operating mode of the buck converter is selected via the buck control register bits. the buck converter can be forced to operate in either synchronous mode or sleep mode. additionally the buck converter has an automatic mode where it will switch between synchronous and sleep mode d epending on the load current. in sleep mode , the buck converter works in pfm mode. an internal zero crossing comparator is used to time the turn - off of the nfet, thereby removing the need for an external schottky diode. if reduced output power is required for improved efficiency it can run with a smaller pass device. buckperi is able to operate up to a duty cycle of 100%, where a bypass switch across the coil will be enabled to prevent lc oscillations introduced by load - current spikes. v b u c k c o r e s w b u c k c o r e 4 0 u f s w b u c k p r o s y m m e t r i c a l c o n n e c t i o n
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 91 of 142 ? 2017 dialog semiconductor figure 42 : buckperi bypass mode table 80 : selection of buck current limit from coil parameters min. isat (ma) frequency (mhz) buck current limit (ma) 1450 2 1200 1200 2 1000 960 2 800 840 2 700 18.3 power s upplies table 81 : buck a register address bit type label defaul t description r44 buck_a 1:0 r/w bcore_mode 01 00: buckcore always operates in sleep mode 01: buckcore operates in automatic mode 10: buckcore always operates in synchronous mode 11: buckcore in automatic forcing to synchronous mode 3:2 r/w bcore_ilim 10 00: buckcore current limit 700 ma (1400 ma in merged mode) 01: buckcore current limit 800 ma (1600 ma in merged mode) 10: buckcore current limit 1000 ma (2000 ma in merged mode) 11: buckcore current limit 1200 ma (2400 ma in merged mode) 5:4 r/w bpro_mode 01 00: buckpro always operates in sleep mode 01: buckpro operates in automatic mode 10: buckpro always operates in synchronous mode 11: buckpro in automatic forcing to synchronous mode 7:6 r/w bpro_ilim 10 00 : buckpro current limit 700 ma 01 : buckpro current limit 800 ma 10 : buckpro current limit 1000 ma 11 : buckpro current limit 1200 ma v b u c k p e r i s w b u c k p e r i 1 0 u f 1 0 0 % d u t y b y - p a s s
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 92 of 142 ? 2017 dialog semiconductor table 82 : buck b register address bit type label default description r45 buck_b 1:0 r/w bmem_ mode 01 00: buckmem always operates in sleep mode 01: buckmem operates in automatic mode 10: buckmem always operates in synchronous mode 11: buckmem in automatic forcing to synchronous mode 3:2 r/w bmem_ili m 10 00 : buckmem current limit 700 ma 01 : buckmem current limit 800 ma 10 : buckmem current limit 1000 ma 11: buckmem current limit 1200 ma 5:4 r/w 00 reserved 7:6 r/w 00 reserved table 83 : buckcore register address bit type label default description r46 buckcore 5:0 r/w vbcore 110100 000000: 0.500 v 000001: 0.525 v 000010: 0.550 v 000011: 0.575 v 000100: 0.600 v 000101: 0.625 v 011011: 1.175 v 011100: 1.200 v 011101: 1.225 v 011110: 1.250 v 011111: 1.275 v 100000: 1.300 v 100001: 1.325 v 100010: 1.350 v 100011: 1.375 v 100100: 1.400 v 100101: 1.425 v 100110: 1.450 v 100111: 1.475 v 101000: 1.500 v 101001: 1.525 v 101010: 1.550 v 101011: 1.575 v 101100: 1.600 v 101101: 1.625 v 101110: 1.650 v 101111: 1.675 v 110000: 1.700 v 110001: 1.725 v
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 93 of 142 ? 2017 dialog semiconductor register address bit type label default description 110010: 1.750 v 110011: 1.775 v 110100: 1.800 v 110101: 1.825 v 110110: 1.850 v 110111: 1.875 v 111000: 1.900 v 111001: 1.925 v 111010: 1.950 v 111011: 1.975 v 111100: 2.000 v 111101: 2.025 v 111110: 2.050 v 111111: 2.075 v 6 r/w bcore_e n 0 0: buckcore disabled 1: buckcore enabled 7 r/w bcore_c onf 0 0: voltage ramped after assertion of vb_core_go 1: supply voltage preset table 84 : buckpro register address bit type label default description r47 buckpro 5:0 r/w vbpro 011100 000000: 0.500 v 000001: 0.525 v 000010: 0.550 v 000011: 0.575 v 000100: 0.600 v 000101: 0.625 v 011011: 1.175 v 011100: 1.200 v 011101: 1.225 v 011110: 1.250 v 011111: 1.275 v 100000: 1.300 v 100001: 1.325 v 100010: 1.350 v 100011: 1.375 v 100100: 1.400 v 100101: 1.425 v 100110: 1.450 v 100111: 1.475 v 101000: 1.500 v 101001: 1.525 v 101010: 1.550 v 101011: 1.575 v 101100: 1.600 v
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 94 of 142 ? 2017 dialog semiconductor register address bit type label default description 101101: 1.625 v 101110: 1.650 v 101111: 1.675 v 110000: 1.700 v 110001: 1.725 v 110010: 1.750 v 110011: 1.775 v 110100: 1.800 v 110101: 1.825 v 110110: 1.850 v 110111: 1.875 v 111000: 1.900 v 111001: 1.925 v 111010: 1.950 v 111011: 1.975 v 111100: 2.000 v 111101: 2.025 v 111110: 2.050 v 111111: 2.075 v 6 r/w bpro_en 0 0: buckpro disabled 1: buck pro enabled 7 r/w bpro_co nf 0 0: voltage ramped after assertion of vb_pro_go 1: supply voltage preset table 85 : buckmem register address bit type label default description r48 buckmem 5:0 r/w vbmem 101011 000000: 0.950 v 000001: 0.975 v 000010: 1.000 v 000011: 1.025 v 000100: 1.050 v 010110: 1.500 v 010111: 1.525 v 011000: 1.550 v 011001: 1.575 v 011010: 1.600 v 011011: 1.625 v 011100: 1.650 v 011101: 1.675 v 011110: 1.700 v 011111: 1.725 v 100000: 1.750 v 100001: 1.775 v 100010: 1.800 v 100011: 1.825 v
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 95 of 142 ? 2017 dialog semiconductor register address bit type label default description 100100: 1.850 v 100101: 1.875 v 100110: 1.900 v 100111: 1.925 v 101000: 1.950 v 101001: 1.975 v 101010: 2.000 v 101011: 2.025 v 101100: 2.050 v 101101: 2.075 v 101110: 2.100 v 101111: 2.125 v 110000: 2.150 v 110001: 2.175 v 110010: 2.200 v 110011: 2.225 v 110100: 2.250 v 110101: 2.275 v 110110: 2.300 v 110111: 2.325 v 111000: 2.350 v 111001: 2.375 v 111010: 2.400 v 111011: 2.425 v 111100: 2.450 v 111101: 2.475 v 111110: 2.500 v 111111: 2.525 v 6 r/w bmem_en 0 0: buckmem disabled 1: buckmem enabled 7 r/w bmem_co nf 0 0: voltage ramped after assertion of vb_mem_go 1: supply voltage preset table 86 : buckperi register address bit type label default description r49 buckperi 4:0 r/w vbperi 11011 00000: 1.8 v 00001: 1.85 v 00010: 1.9 v 00011: 1.95 v 00100: 2.0 v 00101: 2.05 v 00110: 2.1 v 00111: 2.15 v 01000: 2.2 v 01001: 2.25 v 01010: 2.3 v
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 96 of 142 ? 2017 dialog semiconductor register address bit type label default description 01011: 2.35 v 01100: 2.4 v 01101: 2.45 v 01110: 2.5 v 01111: 2.55 v 10000: 2.6 v 10001: 2.65 v 10010: 2.7 v 10011: 2.75 v 10100: 2.8 v 10101: 2.85 v 10110: 2.9 v 10111: 2.95 v 11000: 3.0 v 11001: 3.1 v 11010: 3.2 v 11011: 3.3 v 11100: 3.4 v 11101: 3.5 v 11110: 3.6 v >11110: 3.6 v 5 r/w bperi_hs 0 0: buck_peri pmos pass device is full size 1: buck_peri pmos pass device is half size 6 r/w bperi_en 0 0: buckperi disabled 1: buckperi enabled 7 r/w bperi_co nf 0 0: supply voltage immediate change 1: supply voltage preset (activated during power down sequence instead of disable) table 87 : ldo1 register address bit type label default description r50 ldo1 4:0 r/w vldo1 01100 00000: 0.600 v 00001: 0.650 v 00010: 0.700 v 00011: 0.750 v 00100: 0.800 v 00101: 0.850 v 00110: 0.900 v 00111: 0.950 v 01000: 1.000 v 01001: 1.050 v 01010: 1.100 v 01011: 1.150 v 01100: 1.200 v 01101: 1.250 v 01110: 1.300 v
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 97 of 142 ? 2017 dialog semiconductor register address bit type label default description 01111: 1.350 v 10000: 1.400 v 10001: 1.450 v 10010: 1.500 v 10011: 1.550 v 10100: 1.600 v 10101: 1.650 v 10110: 1.700 v 10111: 1.750 v 11000: 1.800 v >11000: 1.800 v 6 r/w ldo1_en 0 0: ldo1 disabled 1: ldo1 enabled 7 r/w ldo1_co nf 0 0: supply voltage immediate change 1: supply voltage preset (activated during power down sequence instead of disable) table 88 : reserved register address bit type label default description r51 7 :0 r/w 00 00000 0 reserved table 89 : ldo3 register address bit type label default description r52 ldo3 5:0 r/w vldo3 101101 000000: 1.725 v 000001: 1.750 v 000010: 1.775 v 000011: 1.800 v 000100: 1.825 v 010110: 2.275 v 010111: 2.300 v 011000: 2.325 v 011001: 2.350 v 011010: 2.375 v 011011: 2.400 v 011100: 2.425 v 011101: 2.450 v 011110: 2.475 v 011111: 2.500 v 100000: 2.525 v 100001: 2.550 v 100010: 2.575 v 100011: 2.600 v 100100: 2.625 v 100101: 2.650 v
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 98 of 142 ? 2017 dialog semiconductor register address bit type label default description 100110: 2.675 v 100111: 2.700 v 101000: 2.725 v 101001: 2.750 v 101010: 2.775 v 101011: 2.800 v 101100: 2.825 v 101101: 2.850 v 101110: 2.875 v 101111: 2.900 v 110000: 2.925 v 110001: 2.950 v 110010: 2.975 v 110011: 3.000 v 110100: 3.025 v 110101: 3.050 v 110110: 3.075 v 110111: 3.100 v 111000: 3.125 v 111001: 3.150 v 111010: 3.175 v 111011: 3.200 v 111100: 3.225 v 111101: 3.250 v 111110: 3.275 v 111111: 3.300 v 6 r/w ldo3_en 0 0: ldo3 disabled 1: ldo3 enabled 7 r/w ldo3_co nf 0 0: voltage ramped after assertion of vldo3_go 1: supply voltage preset table 90 : reserved register address bit type label default description r53 , r54, r55 7 :0 r/w 00 000000 reserved table 91 : ldo7 register address bit type label default description r56 ldo7 5:0 r/w vldo7 001100 000000: 1.20 v 000001: 1.25 v 000010: 1.30 v 000011: 1.35 v 000100: 1.40 v 000101: 1.45 v 000110: 1.50 v
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 99 of 142 ? 2017 dialog semiconductor register address bit type label default description 000111: 1.55 v 001000: 1.60 v 001001: 1.65 v 001010: 1.70 v 001011: 1.75 v 001100: 1.80 v 001101: 1.85 v 001110: 1.90 v 001111: 1.95 v 010000: 2.00 v 010001: 2.05 v 010010: 2.10 v 010011: 2.15 v 010100: 2.20 v 010101: 2.25 v 010110: 2.30 v 010111: 2.35 v 011000: 2.40 v 011001: 2.45 v 011010: 2.50 v 011011: 2.55 v 011100: 2.60 v 011101: 2.65 v 011110: 2.70 v 011111: 2.75 v 100000: 2.80 v 100001: 2.85 v 100010: 2.90 v 100011: 2.95 v 100100: 3.00 v 100101: 3.05 v 100110: 3.10 v 100111: 3.15 v 101000: 3.20 v 101001: 3.25 v 101010: 3.30 v 101011: 3.35 v 101100: 3.40 v 101101: 3.45 v 1 01110: 3.50 v 101111: 3.55 v 110000: 3.60 v >110000: 3.60 v 6 r/w ldo7_en 0 0: ldo7 disabled 1: ldo7 enabled 7 r/w ldo7_co nf 0 0: supply voltage immediate change 1: supply voltage preset (activated during power down sequence instead of disable)
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 100 of 142 ? 2017 dialog semiconductor table 92 : reserved register address bit type label default description r57 7 :0 r/w 00 000000 reserved table 93 : ldo9 register address bit type label default description r58 ldo9 5:0 r/w vldo9 011001 7 6 r/w ldo9_en 0 0: ldo9 disabled 1: ldo9 enabled 7 r/w ldo9_co nf 0 0: supply voltage immediate change 1: supply voltage preset (activated during power down sequence instead of disable) table 94 : ldo10 register bit type label default description r59 ldo10 5:0 r/w vldo10 100001 000000: 1.20 v 000001: 1.25 v 000010: 1.30 v 000011: 1.35 v 000100: 1.40 v 000101: 1.45 v 000110: 1.50 v 000111: 1.55 v 001000: 1.60 v 001001: 1.65 v 001010: 1.70 v 001011: 1.75 v 001100: 1.80 v 001101: 1.85 v 001110: 1.90 v 001111: 1.95 v 010000: 2.00 v 010001: 2.05 v 010010: 2.10 v 010011: 2.15 v 010100: 2.20 v 010101: 2.25 v 010110: 2.30 v 010111: 2.35 v 011000: 2.40 v 011001: 2.45 v 011010: 2.50 v 011011: 2.55 v 011100: 2.60 v 011101: 2.65 v 011110: 2.70 v 0 11111: 2.75 v
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 101 of 142 ? 2017 dialog semiconductor register bit type label default description 100000: 2.80 v 100001: 2.85 v 100010: 2.90 v 100011: 2.95 v 100100: 3.00 v 100101: 3.05 v 100110: 3.10 v 100111: 3.15 v 101000: 3.20 v 101001: 3.25 v 101010: 3.30 v 101011: 3.35 v 101100: 3.40 v 101101: 3.45 v 101110: 3.50 v 101111: 3.55 v 110000: 3.60 v >110000: 3.60 v 6 r/w ldo10_en 0 0: ldo10 disabled 1: ldo10 enabled 7 r/w ldo10_co nf 0 0: supply voltage immediate change 1: supply voltage preset (activated during power down sequence instead of disable) table 95 : supply register address bit type label default description r60 supply 0 r/w vb_core _go 0 0: hold vbuckcore at current setting. 1: ramp buckcore to configured voltage. while the voltage is ramping, write access is blocked to buckpro register. vbuckcore_go is cleared when the target voltage is reached. while ramping, the buck is forced into pwm 1 r/w vb_pro_ go 0 0: hold vbuckpro at current setting. 1: ramp buckpro to configured voltage. while the voltage is ramping, write access is blocked to buckpro register. vbuckpro_go is cleared when the target voltage is reached. while ramping, the buck is forced into pwm 2 r/w vb_mem_ go 0 0: hold vbuckmem at current setting 1: ramp buckmem to configured voltage. while the voltage is ramping, write access is blocked to buckmem register. vbuckmem_go is cleared when the target voltage is reached. while ramping, the buck is forced into pwm. 3 r/w 0 reserved 4 r/w vldo3_g o 0 0: hold vldo3 at current setting. 1: ramp vldo3 to configured voltage. while
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 102 of 142 ? 2017 dialog semiconductor register address bit type label default description the voltage is ramping, write access is blocked to ldo3 register. vldo3_go is cleared when the target voltage is reached (ignored if ldo3_conf was asserted) 5 r/w 0 reserved 6 r/w 0 reserved 7 r/w v_lock 0 0: allows writing new values into buck and ldo voltage registers 1: disables voltage re - programming from the host (enable/disable, dvc ramping, power sequencing including deferred update still possible) table 9 6 : pulldown register address bit type label default description r61 pulldown 0 r/w core_pd _dis 0 0: enable pull down resistor 1: no pull down resistor in disabled mode 1 r/w pro_pd_ dis 0 0: enable pull down resistor 1: no pull down resistor in disabled mode 2 r/w mem_pd_ dis 0 0: enable pull down resistor 1: no pull down resistor in disabled mode 3 r/w ldo1_pd _dis 0 0: enable pull down resistor 1: no pull down resistor in disabled mode 7: 4 r/w 0 000 reserved
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 103 of 142 ? 2017 dialog semiconductor 19 programmable b attery c harger the system power and charger control block contains the following functions: 2 - way power path switch with automatic selection of the system power source (vddout) from either vbus or vbat. battery disconnection switch to allow i nstant - on system start - up with discharged main battery embedded active diode and external active diode controller provide a low loss power path seamless switching in whenever input power is limited or unavailable vbat tracking switching regulator supplying system power out of usb port with an efficiency > 85 % @ 1000 ma load current fu ll featured autonomous li - ion/polymer battery charger with pre - configurable current limits and programmable eoc voltages (4.1 v to 4.4 v), current monitoring (always active when charger is on) and otp programmable eoc currents. integrated control over batt ery pre - charge (including battery pack wakeup), constant - current and constant - voltage charging phases automatic charge current reduction via dynamic charger current control (dccc), maintaining vddout system power at minimum 3.5 v without exceeding the supp ly current limits. individual programmable current limits for the usb supply input a utomatic usb battery charging , specification rev.1.0 compliant charger type detection, usb suspend mode support battery temperature qualified charging (using gp - adc) with d efault threshold settings loaded from otp battery charging termination by current (using gp - adc) with default threshold setting loaded from otp extended battery life by protection against continuous top charging (configurable re - charge hysteresis) thermal limiting of charge current by ic temperature (using gp - adc) programmable charge termination by timer for safety
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 104 of 142 ? 2017 dialog semiconductor figure 43 : charger block diagram 19.1 high efficiency c harger dc - dc b uck c onverter in order to minimi s e the total system power loss at high input currents, da9021/22 s main system power vddout is supplied out of a high efficient dc - dc converter, which is able to track vbat+200 mv (with minimum vddout = 3.6 v). when powering up vddout the dc - dc co nverter provides a soft - start circuitry and the current limit is implemented to meet the usb 2.0 specification for currents spikes where charge peaks are always less than an equivalent bypass capacitive load of 10 f. an integrated over voltage protection and supply selection controls the behaviour of these power paths. the buck converter operates at a high frequency (2 mhz). this switching frequency is chosen to be high enough to allow the use of a small 4.7 h inductor. to guarantee high efficiency at hi gh load currents the series resistance of the coil is limited to 100 m ? (at 1000 ma). under light load conditions the buck converter can be forced by the host to a low current pfm mode. 19.2 charger s upply d etection/vbus m onitoring da9021/22 provides a charg er input vbus, which can be supplied either from a usb host/hub, a usb type host/hub charger or a dedicated wall charger. to protect da9021/22 against destruction from invalid supplies an overvoltage protection circuitry will disconnect every charger tha t supplies more than 5.6 v. c h a r g e r d e t e c t i o n a n d s e l e c t o r , o v - p r o t e c t i o n , u s b - s u s p e n d v b u s v b u s _ s e l v b u s _ p r o t c h a r g e r b u c k w i t h v b a t t r a c k i n g r e v e r s e c u r r e n t p r o t e c t i o n v s w v d d o u t b a t t e r y c h a r g e r a n d a c t i v e d i o d e s y s t e m l o a d s w i t c h e x t . a c t i v e d i o d e s y s t e m l o a d s w i t c h n t c v b a t t b a t t j u n c i c h g i c h g v b a t t b a t c h a r g e t i m e r v d d _ r e f b a t t e r y s w i t c h i c h g s e n s e v c e n t e r a u t o m a t i c 2 - w a y l o a d s w i t c h u s b c h a r g e r d e t e c t i o n l i n e a r c h a r g i n g c u r r e n t / v o l t a g e c o n t r o l w i t h d c c c b a t t e r y t e m p e r a t u r e s u p e r v i s i o n a n d i c t h e r m a l r e g u l a t i o n a c t i v e d i o d e s y s t e m l o a d s w i t c h g p - a d c b a t t e r y i s e t _ b u c k
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 105 of 142 ? 2017 dialog semiconductor figure 44 : charger d etection the charger initial insertion is detected when the voltage comparators indicate that vbus_prot is still present after a debounce time of 10 ms. at this time the charger buck converter will be enabled via a soft start up to the appropriate current limitation (see above) if the chargers attach comparator flags with enough voltage headroom from vddout to vcenter to allow the buck converter to operate . the battery is disconnected from vddout as the charger supply takes over. this is done by enabling an active diode function as part of the battery p - fet, giving a clean transfer of power. the differential charger attach comparator (chg_att) detects a typ ical drop of 100 mv across vcenter to vddout and acts together with the charge detection comparators as an under voltage lock out, which is performed in two phases. in the first phase a falling voltage at the charger input towards vch_thr will force the ch arger buck state machine to reduce the charger buck current limitation step by step down to its minimum value. if the input voltage will not recover and the chg_att comparator flags a voltage drop from vcenter to vddout is below 85 mv, the charger buck is disabled as soon the current limit reaches its minimum value. if the input voltage recover s , the state machine starts increasing the current limit again until it reaches its programmed value using a slow attach time. if during normal operation the chg_det signals a valid input voltage, but the chg_att comparator flags a low drop across vcenter to vddout, the buck current limit is ramped down in the same way as mentioned before. the charger buck will be disabled if the voltage drop across vcenter to vddout does not rise towards a minimum of 100 mv. note chg_det is vbus_det dependant. 19.3 vbus overvoltage p rotection and usb s uspend da9021 /22 includes an overvoltage protection circuit that disconnects vbus from the vbus_prot input via the external pfets whenever the vbus voltage is above the vchg_excess threshold. this circuit supports a usb low power suspend mode , enabled via the control bit vbus_susp , where the vbus_prot path is switched off and the vddout main supply is switched to the battery disabling chargi ng (similar to removing the vbus supply).vbus_susp is cleared when the usb charger is removed. the charger buck supports a bus powered low current mode which is enabled via control bit chg_buck_lp. in this mode the charger buck is forced to a pfm mode to ensure the system is backed up with minimum power dissipation when being supplied from an external supply. charging will be suspended, but with appropriate configurations of the regulators , power to for example, an idle usb phy can be supplied . v b u s _ v l d + 5 . 6 v v b u s - v b u s _ p r o t + - 4 . 4 v o r v b u s _ s u s p _ e n e x t . p m o s v b u s _ o v
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 106 of 142 ? 2017 dialog semiconductor note usb high power suspend mode allows max. 2.5 ma monitoring of the vbus voltage is always provided, allowing the host processor to detect a removal of the vbus , including in suspend mode (see vbus status bit). the removal of supplies will issue e_vbus_rem interrupt requests and trigger a wakeup in power - down mode if is still present after a debounce time of 10 ms . removing vbus will clear vbus_susp and when removing the activ e supply chg_buck_lp is cleared. 19.4 battery p re - c harge mode battery pre - charge mode is started and controlled automatically by da9021/22 . this is needed to ensure that a completely empty battery can be charged without the intervention of the host processor. in the event of a heavily discharged battery the battery is disconnected from the vddout supply so that the system may be started. the charger then powers the vddout rail from one of the supply paths as described above, allowing the ldos and buck converte r to be switched on. pre - charge mode is started when a charger has been detected and the vddout voltage is greater than vbat + 200 mv (or > 3.6 v). the pre - charge mode also handles the re - enable of a battery pack which has an internal safety switch been op ened (from deep discharge). the safety switch will be reset by applying a current through the diode in the safety switch, charging the battery cell up to about 2.8 v where the switch will be closed again. da9021/22 can optionally drive a flashing led at gpio 10 that will indicate the invisible battery charging until the application is able to power up. charging is suspended by writing 0 ma to ichg_pre in pre - charge mode.
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 107 of 142 ? 2017 dialog semiconductor 19.5 fast l inear - c harge mode battery linear - charge mode is initiated automatically once the battery voltage has exceeded the v bat_fault threshold for a minimum of 40 ms (to allow a battery safety switch to close) . the linear charge mode has two phases of operation: constant c urrent (cc) mode constant v oltage (cv) mode if the battery voltage (vbat) is less than the target voltage, the charging starts in cc mode. temperature supervision of the battery by the gp - adc channel 2 is started and charging is only allowed if the battery temperature is in the correct range. if a tbat fault condition i s detected while charging the battery, charging will be suspend ed until the battery temperature is back in the correct range, except in the case that the charging end point has been reached. the cc mode has 64 possible current settings ranging from 20 ma to 1260 ma, controllable by the host processor via the power manager bus. when the battery voltage approaches the target regulation voltage level the charger control loop changes over to cv mode. note that the cc and cv mode operate in parallel, with the c c loop limiting the charging current and the cv loop limiting the charging voltage. the charging current will be measured automatically by the gp - adc, generating an average current reading over 10 s period that will be used to determine the charging end po int detection. this allows for flexibility in determining when to automatically stop charging for different sizes and types of battery. 19.6 thermal charge current control during charging the temperature of da9021/22 ( t junc ) is continuously supervised by the gp - adc against overheating. a thermal supervision circuit reduces the charge current via a current/temperature control whenever the die temperature attempts to rise above a preset value of tchargelow (90c). it completely suspends charging when tchargesus pend (120c) has been reached. this protects da9021/22 from excessive temperature but allows the application to push the limits of the power handling capability of a given circuit board without risk of damage. another benefit of the thermal limit is that the charge current can be set according to typical, not worst - case, ambient temperatures for a given application with the assurance that the charger will automatically reduce the current in worst - case conditions. whenever the junction temperature ( t junc ) , see section 20 monitoring adc and t ouch s creen i nterface , overrides a threshold from below table the thermal control will raise the (internal) temperature class and reduce the battery charge current limit towards the related value. it will increase the charge current limit only if the temperature drops below th e threshold of the actual c lass 1. this prohibits a continuous change of the charging current around a temperature threshold. the thermal charge current control can be disabled but this will increase the risk for a complete thermal shutdown from the intern al temperature supervision inside high power applications. table 97 : thermal charge current control t junc ( c) class charge current limit (ma) ichg_bat (register value) <90 0 1260 111111 >90 1 1100 110111 >95 2 900 101101 >100 3 700 100011 >105 4 500 011001 >110 5 300 001111 >115 6 charging suspended 000000
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 108 of 142 ? 2017 dialog semiconductor 19.7 dynamic c harging c urrent c ontrol (dccc) and a ctive - d iode if the combination of the system load plus the battery charging current (pre - charge or fast linear charging) exceeds the charger buck output current (which is limited by the current limitation of the buck) into the vddout node, then the output voltage on v ddout will start to drop down to vbat (which automatically reduces the charging current). when the vddout voltage drops to 3.6 v, and the charger buck is still in current limit, the charging current to the battery will be reduced until it reaches zero or the buck runs below its current limit. once the vddout is > 3.6 v or the buck runs below its current limit, the charging will be increased until it reaches the programmed setting. the battery charging control includes an a ctive - d iode circuit that will aut omatically provide current to the system if the vddout voltage falls below the vbat voltage. if large currents or very low resistance in series with the battery output is required the path can be extended by an external power fet using the external a ctive - d iode controller. figure 45 : dccc & a ctive d iode operation 19.8 programmable c harge t ermination by t ime the battery charger block will provide a safety timer controlling the maximum time allowed for battery charging. the charge timer is programmable through the power manager bus. the total charge time is defined as the time from when the battery charging was enabled (both for fast and pre - charge mode charging). during fast charge mode the time is dynamically extended whenever the current into the battery is automatically reduced from dccc or thermal regulation towards less than ( for example ) 50 % of the conf igured maximum charge current. this change in charge time is inversely proportional to the change in charge current. the dynamic safety timer is limited to eight times the programmed clock period and can alternatively be configured towards a fixed timer. i f the timer expires (reaches zero) an interrupt request is issued and charging is disabled. 1 0 0 0 2 0 0 3 0 0 4 0 0 i o u t i v b u s 5 0 0 6 0 0 i c h g _ b a t 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 i o u t [ m a ] c u r r e n t [ m a ] 6 0 0 e x a m p l e o f d c c c & a c t i v e d i o d e o p e r a t i o n i n u s b h i g h p o w e r m o d e e x t r a c u r r e n t s u p p l i e d b y a c t i v e d i o d e
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 109 of 14 2 ? 2017 dialog semiconductor 19.8.1 battery charger table 98 : chg_buck register address bit type label default description r62 chg_buck 3:0 r/w iset_buck 0010 note 1 0000: 80 ma 0001: 90 ma 0010: 100 ma 0011: 110 ma 0100: 120 ma 0101: 130 ma 0110: 400 ma 0111: 450 ma 1000: 500 ma 1001: 550 ma 1010: 600 ma 1011: 650 ma 1100: 700 ma 1101: 900 ma 1110: 1100 ma 1111: 1300 ma 4 r/w chg_buck_en 1 this bit is controlled by the charger state machine. if reset by the host only a charger removal and re - attach starts automatic charger control again. if set to 1 the automatic charger control is started immediately. 5 r/w chg_buck_lp 0 when set to 1 the charger buck is forced to the pfm ( sleep ) mode and charging will be suspended. automatically cleared when starting charging/re - charging 6 r/w 0 reserved 7 r/w chg_temp 1 0: thermal charging control disabled 1: thermal charging control enabled note 1 the otp value is used during manufacturing to trim the max. 100 ma current limit (usb default charge current) table 99 : wait_cont register address bit type label default description r63 wait_cont 3:0 r/w delay_time 1011 0000: 0 sec 0001: 540 s 0010: 1.0 ms 0011: 2.0 ms 0100: 4.1 ms 0101: 8.2 ms 0110: 16.4 ms 0111: 32.8 ms 1000: 65.5 ms 1001: 131 ms 1010: 262 ms
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 110 of 142 ? 2017 dialog semiconductor register address bit type label default description 1011: 524 ms 1100: 1.0 s 1101: 2.1 s 1110: 4.2 s 1111: for future use (8.4 s) 4 r/w en_32kout 0 0 : out_32k output buffer disabled. 1: out_32k output buffer enabled 5 r/w wait_mode 1 0: wait for gpio10 to be active 1: delay timer mode (start timer and wait for expire) 6 r/w rtc_clock 1 0: no gating of rtc calendar clock 1: clock to rtc counter is gated until wait is asserted 7 r/w wait_dir 0 0: wait during power - up sequence 1: wait during power - up and power - down sequence table 100 : iset register address bit type label default description r64 iset 3:0 r/w iset_usb 1000 note 1 0000: 80 ma 0001: 90 ma 0010: 100 ma 0011: 110 ma 0100: 120 ma 0101: 130 ma 0110: 400 ma 0111: 450 ma 1000: 500 ma 1001: 550 ma 1010: 600 ma 1011: 650 ma 1100: 700 ma 1101: 900 ma 1110: 1100 ma 1111: 1300 ma 7:4 0000 note 1 typical otp value for an activated usb charger detection, see setting at chg_usb_ilim
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 111 of 142 ? 2017 dialog semiconductor table 101 : bat_chg register address bit type label default description r65 bat_chg 5:0 r/w ichg_bat note 1 001010 battery charger current limit (cc) 000000: 0 ma (charging suspended) 000001: 20 ma 000010: 40 ma 000011: 60 ma 000100: 80 ma 000101: 1 00 ma 000110: 120 ma 000111: 140 ma 001000: 160 ma 001001: 180 ma 001010: 200 ma 001011: 220 ma ... 110111: 1100 ma 111000: 1120 ma 111001: 1140 ma 111010: 1160 ma 111011: 1180 ma 111100: 1200 ma 111101: 1220 ma 111110: 1240 ma 111111: 1260 ma 7:6 r/w ichg_pre 10 battery pre - charge current limit 00: 0 ma (charging suspended) 01: 20 ma 10: 40 ma 11: 60 ma note 1 3 - bit trimming are used to tweak the absolute value via otp table 102 : chg_cont register a d dress bit type label default description r66 chg_cont 2:0 r/w vch_thr 001 charger buck reduces the actual current limit if external supply voltage drops below: 000: 3.7 v 001: 3.8 v 010: 3.9 v 011: 4.0 v 100: 4.1 v 101: 4.2 v 110: 4.3 v 111: 4.35 v (detection threshold) 7:3 r/w vchg_bat 10110 battery charger voltage limit (cv) 00000: 3.650 v 00001: 3.675 v
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 112 of 142 ? 2017 dialog semiconductor register a d dress bit type label default description 00010: 3.700 v 00011: 3.725 v 00100: 3.750 v 00101: 3.775 v 00110: 3.800 v 00111: 3.825 v 01000: 3.850 v 01001: 3.875 v 01010: 3.900 v 01011: 3.925 v 01100: 3.950 v 01101: 3.975 v 01110: 4.000 v 01111: 4.025 v 10000: 4.050 v 10001: 4.075 v 10010: 4.100 v (li - polymer) 10011: 4.125 v 10100: 4.150 v 10101: 4.175 v 10110: 4.200 v (li - ion) 10111: 4.225 v 11000: 4.250 v 11001: 4.275 v 11010: 4.300 v 11011: 4.3250 v 11100: 4.35 0 v 11101: 4.375 v 11110: 4.400 v 11111: 4.425 v table 103 : input_cont register a d dress bit type label default description r67 input_cont 3:0 r/w tctr note 1 1010 0000: charge time out disabled 0001: 30 mins remaining 0010: 60 mins remaining 0011: 90 mins remaining 1010: 300 mins remaining 1111: 450 mins remaining 4 r/w vbus_susp 0 when set to 1, the usb charger path is set into suspend mode, where the power path from vbus_prot to vcenter is switched off. automatically cleared when usb supply is removed
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 113 of 142 ? 2017 dialog semiconductor register a d dress bit type label default description 6 r/w vchg_drop 0 charger re - enabled if vbat drops below vchg_bat minus 0: 100 mv 1: 200 mv 7 r/w tctr_mode 0 0: total charge time is extended during periods with reduced charge current 1: total charge time is fixed note 1 changing the value of tctr sets the timer to the new value. the timer is paused whenever the ichg_bat=0 ma . the current timer value can be read from the chg_time register. the timer counts down from the loaded value. table 104 : chg_time register address bit type label default description r68 chg_time 7:0 r chg_time 00000000 remaining minutes until charging time out 00000000: charging ended 00000001: 2 mins remaining 00000010: 4 mins remaining 11111111: 510 mins remaining
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 114 of 142 ? 2017 dialog semiconductor 20 monitoring adc and t ouch s creen i nterface 20.1 adc o verview the da9021/22 provides an analogue to digital converter (adc) with 10 - bit resolution and track and hold circuitry combined with an analogue input multiplexer. the analogue input multiplexer allow s conversion of up to 10 different inputs. the track and hold circuit ensures stable input voltages at the input of the adc during the conversion. the adc is used to measure the following inputs: channel 0: vddout C measurement of the system voltage channel 1: ich C internal battery charger current measurement channel 2: tbat C output from the battery ntc channel 3: vbat C measurement of the battery voltage channel 4: adc_in4 C high impedance input (0 C 2.5 v) channel 5: adc_in5 C high impedance input (0 C 2.5 v) channel 8: i nternal t junc . - sense (internal temp. sensor) figure 46 : adc b lock d iagram 20.1.1 input mux the mux selects from and isolates the inputs and presents the channel to be measured to the adc i nput. when selected, an input amplifier on the vddout (and vbat) channel subtracts the vddcore reference voltage and scales the signal to the correct value for the adc. 20.1.2 adc the adc uses a sample and hold successive approximation switched capacitor archite cture. it is supplied from internal core supply rail vddcore (2.5 v). it can be used either a high speed mode with measurements sequences repeated every 1 ms or in economy mode with sequences performed every 10 ms. 20.2 manual conversion mode for manual measur ements the adc powers up, one conversion is done on the specified channel and the 10 - bit result is stored. after the conversion is completed, the adc powers down again and an irq event flag is set (end of manual conversion). the generation of this irq can be masked by the irq mask. mux track and hold adc 2 . 5 v vref power manager r egisters adcin 4 , 5 tbat connections from charger vddout ich tbat vbat
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 115 of 142 ? 2017 dialog semiconductor 20.3 automatic m easurements s cheduler the automatic measurement scheduler allows monitoring of the system voltage vddout, the charging current ich, the battery temperature tbat and the touch screen interface xy. additionally, the auxi liary channels adcin4 to adcin6 are able to be automatically monitored with upper and low er thresholds set by power manager registers to give a n nirq event if a measurement is outside these levels. all measurements are handled by the scheduler system detai led below. the scheduler performs a sequence of 10 slots continually repeated according to the configured mode. if the tsi is enabled the first half slot performs either an automatic or a manual conversion. the second half slot performs tsi actions and mea surements. if the tsi measurement is disabled there is no split of the slot and only the first conversion is performed. a slot requires 100 s. the pattern of measurements over the 10 slots depends upon the charging mode. automatic measurements of vddout, ich and tbat are made during charging. these cease when not charging. when automatic measurements are disabled, the manual measurements are made immediately and unused automatic measurements will handle manual conversion requests. figure 47 : adc s equence 20.3.1 a0: vddout low voltage nirq m easurement mode vddout is measured and compared with a threshold. if the reading is below this level for three consecutive readings an error event is generated. after an nirq assertion, the automatic measurement of channel vddout is paused for reading . the host must clear the associated event flag (the event causing value is kept inside the result register) to re - enable the supervision of vddout. if no action is taken to resto re the vddout voltage (discharging the battery is continued) the host may consider to switch off . o ptional always o n blocks (backup battery charger or supplies, that are not disabled when powering down to reset mode) to save energy later on. the multiple r eading provides a debouncing of the vddout voltage before issuing a nirq. the assertion of nirq can be masked by irq mask. 20.3.2 a1: ich (and ich_bat a verage) m easurement mode when the battery is being charged in fast charge mode the ich current is measured auto matically every 1 or 10 ms and an average value is determined by adding the result to an 18 - bit accumulator and latching the top 8 bits every 1024 samples (during high speed mode nine measurements are ignored before performing an update). this provides an average charging current value every 10.24 s, as long as the system load current is less than the maximum current provided from the external supply. when the ich_bat falls below the value set (and the other requirements for charging end detect ion is met), an irq will be flagged. the irq can be masked. 1 2 3 4 0 s l o t n o e x a m p l e s e q u e n c e o f a u t o - a d c m e a s u r e m e n t s e a c h s l o t a l l o w s 1 a u t o m a t i c o r m a n u a l m e a s u r e m e n t a n d 1 t s i m e a s u r e m e n t t o b e m a d e a 0 - a u t o m a t i c m e a s u r e m e n t o f v d d o u t ( m u x c h a n n e l 0 ) a 1 - a u t o m a t i c m e a s u r e m e n t o f i c h ( m u x c h a n n e l 1 ) a 2 - a u t o m a t i c m e a s u r e m e n t o f t b a t ( m u x c h a n n e l 2 ) a 4 - a u t o m a t i c m e a s u r e m e n t o f a d c i n 4 ( m u x c h a n n e l 4 ) a 5 - a u t o m a t i c m e a s u r e m e n t o f a d c i n 5 ( m u x c h a n n e l 5 ) a 8 - a u t o m a t i c m e a s u r e m e n t o f t j u n c w i t h g a i n 3 ( m u x c h a n n e l 8 ) m i n d i c a t e s t i m e s l o t s w h e n a m a n u a l m e a s u r e m e n t c a n b e m a d e a 0 a 1 m a 4 a 2 n o c h a r g i n g a 0 m m a 4 m w i t h c h a r g i n g 5 6 7 m a 5 m a 5 m 8 9 m a 8 m
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 116 of 142 ? 2017 dialog semiconductor 20.3.3 a2: tbat and b attery t emperature w arning nirq m easurement mode when the battery is being charged, the tbat voltage is measured automatically. during this measurement, a 50 a current is sourced to the battery temperature sense resistor from the tbat pin. t he tbat high and low thresholds are programmed into the otp . the measurement result is used to protect the battery pack from damage during charging at too high temperatures. temperature is flagged by three thr eshold levels held in the threshold registers (loaded from otp at start - up). if three consecutive readings of tbat are outside the configured range, then charging is disabled, an event flag is set and an interrupt is generated. the processor can then eithe r service the irq and turn off charging or do nothing. if nothing is done, the fast charge block will start charging again as soon as the temperature readings are inside the programmed range. the generation of this irq can be masked. 20.3.4 a4, a5: a utomatic m eas urement and h igh/ l ow t hreshold w arning nirq mode the automatic measurement result of channel adc_in4 is stored. if a reading of adc_in4 is outside the programmed range then an event flag is set. if nirq was asserted the automatic measurement of channel adc_in4 is paused until the host has cleared the associated event flag (the event causing value is kept inside the result register). if debouncing is selected the event will only be asserted if two consecutive measurements override the same threshold. the assertion of nirq can be masked by irq mask. the same functionality is available at adc_in5 .in addition it is possible to use adcin4 with a 15 a current source that allows automatic measurement of a resistor value. during automatic measurements the enabl ed current source is dynamically switched off at the end of the conversion and switched on one slot prior to the next adc _ in4 measurement (to enable minimum current consumption, and allow external capacitance to settle), otherwise its status is static. 20.3.5 a8 : a utomatic m easurement of internal temperature selection of channel 8 (t junc ) will be used to measure the output of the internal temperature sensor generated out of a ptat current from the bgr. the channel 8 measures the output of the temperature sensor with a gain of 3. an offset register can be used for a one point calibration of the temperature sensor. 20.3.6 a3, a9: m anual measurement vbat and vbbat channel 3 will be used to manually measure the main battery voltage and channel 9 can be used to measure the v oltage of the backup battery. 20.4 fixed threshold c omparator a comparator with a threshold of vref (1.2 v) is connected to the input of channel 5. the comparator is asserted whenever the input voltage is in excess of or drop s below 1.2 v for at least 10 ms (d ebouncing) when being enabled via comp1v2_en. a status flag comp_det indicat es the actual state and a maskable interrupt request e_comp_v12 is generated at falling and rising edge state transitions. the comparator has to be disabled via comp1v2_en when aut o measurements with high resolution are executed on adcin5. table 105 : r69 to r78 register address bit type label default description r69 , r70, r71, r72, r73, r74, r75, r76, r77, r78 7 :0 0000 0000 reserved
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 117 of 142 ? 2017 dialog semiconductor 20.4.1 led driver table 106 : led4_cont register address bit type label default description r79 led4_cont 6:0 r/w led4_pwm 0000000 gpio14 led on - time (low level at gpio 14, period 21 khz = 95 cycles of 0.5 s) 0000000: off 0000001: 1 % 0000010: 2 % (1 s bursts) 0000011: 3 % 0000100: 4 % 0000101: 5 % 0000110: 6 % 0000111: 7 % 0001000: 8 % 0001001: 9 % 0001010: 10 % 0001011: 11 % 0001100: 12 % 0001101: 13 % 0001110: 14 % 0001111: 15 % 0010000: 16 % . 1011111: 100 % >1011111: 100 % 7 r/w led4_dim 0 0: led4 pwm ratio changes instantly 1: led4 ramps between changes in pwm ratio with 40 ms per step table 107 : led5 _cont register address bit type label default description r80 led5_cont 6:0 r/w led5_pwm 0000000 gpio15 led on - time (low level at gpio 15, requires gpio15_ mode = 1, period 21 khz = 95 cycles) 0000000: off 0000001: 1 % 0000010: 2 % (1 s bursts) 0000011: 3 % 0000100: 4 % 0000101: 5 % 0000110: 6 % 0000111: 7 % 0001000: 8 % 0001001: 9 % 0001010: 10 % 0001011: 11 % 0001100: 12 %
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 118 of 142 ? 2017 dialog semiconductor register address bit type label default description 0001101: 13 % 0001110: 14 % 0001111: 15 % 0010000: 16 % . 1011111: 100 % >1011111: 100 % 7 r/w led5_dim 0 0: led5 pwm ratio changes instantly 1: led5 ramps between changes in pwm ratio with 40 ms per step 20.4.2 gp - adc table 108 : adc_man register address bit type label default description r81 adc_man 3:0 r/w mux_sel 1000 0000: vddout pin (channel 0) selected 0001: ich (channel 1) selected 0010: tbat pin (channel 2) selected 0011: vbat pin (channel 3) selected 0100: adcin4 selected 0101: adcin5 selected 1000: internal t - sense using gain 1 (channel 8) selected 4 r/w man_conv 0 perform manual conversion. bit is reset to 0 when conversion is complete. 7:5 r 000 table 109 : adc_cont register address bit type label default description r82 adc_cont 0 r/w auto_vdd _en 0 0: vddout auto measurements disabled 1: vddout auto measurements enabled 1 r/w auto_ad4_ en 0 0: adcin4 auto measurements disabled 1: adcin4 auto measurements enabled 2 r/w auto_ad5_ en 0 0: adcin5 auto measurements disabled 1: adcin5 auto measurements enabled 3 r/w 0 reserved 4 r/w ad4_isrc_ en 0 0: disable adcin4 15 a current source 1: enable adcin4 15 a current source 5 r/w tbat_isrc _en 0 0: tbat 50 a current source enabled one slot before measurement (disabled after measurement) 1: enable tbat 50 a current source permanently 6 r/w adc_mode 0 0: measurement sequence interval 10 ms
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 119 of 142 ? 2017 dialog semiconductor register address bit type label default description (economy mode) 1: measurement sequence interval 1 ms (recommended f or tsi mode) 7 r/w comp1v2_ en 0 0: disable 1.2 v comparator at adcin5 1: enable 1.2 v comparator table 110 : adc_res_l register address bit type label default description r83 adc_res_l 1:0 r adc_res_lsb 00 10 - bit manual conversion result (2 lsbs) table 111 : adc_res_h register address bit type label default description r84 adc_res_h 7:0 r adc_res_msb 000000 10 - bit manual conversion result (8 msbs) table 112 : vdd_res register address bit type label default description r85 vdd_res 7:0 r vddout_res 00000000 0x00 C 0xff: auto vddout conversion result (adcin0) 00000000 corresponds to 2.5 v 11111111 corresponds to 4.5 v table 113 : vdd_mon register address bit type label default description r86 vdd_mon 7:0 r/w vddout_mon 00000000 vddout_mon threshold setting (8 - bit ). 00000000 corresponds to 2.5 v 11111111 corresponds to 4.5 v table 114 : ichg_av register address bit type label default description r87 ichg_av 7:0 r ichg_av 00000000 charger current average conversion result, 8 msbs from an internal 18 - bit accumulator, updated every 10.24 sec: 00000000 corresponds to 0 ma, 11111111 corresponds to 1000 ma table 115 : ichg_thd register address bit type label default description r88 7:0 r/w ichg_thd 01000000 reduced b attery charging current
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 120 of 142 ? 2017 dialog semiconductor register address bit type label default description ichg_thd detection threshold (compared with ichg_av) 00000000 corresponds to 0 ma, 11111111 corresponds to 1000 ma table 116 : ichg_end register address bit type label default description r89 ichg_end 7:0 r/w ichg_end 00000110 battery charging end point current detection threshold (compared with ichg_av) 00000000 corresponds to 0 ma, 11111111 corresponds to 1000 ma table 117 : tbat_res register address bit type label default description r90 tbat_res 7:0 r tbat_res 00000000 00000000 C 11111111: auto adc tbat conversion result (adcin1) table 118 : tbat_highp register address bit type label default description r91 tbat_highp 7:0 r/w tbat_highp 00000000 00000000 C 11111111: tbat high temperature threshold table 119 : tbat_highn register address bit type label default description r92 tbat_highn 7:0 r/w tbat_highn 00000000 00000000 C 11111111: tbat high temperature resume charging threshold (typically 45 c) table 120 : tbat_low register address bit type label default description r93 tbat_low 7:0 r/w tbat_low 11111111 00000000 C 11111111: tbat low temperature threshold (typically 0 c) table 121 : t_offset register address bit type label default description r94 t_offset 7:0 r/w t_offset 00000000 10000000 C 01111111: signed twos complement calibration offset for junction temperature measurement
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 121 of 142 ? 2017 dialog semiconductor table 122 : adcin4_res register address bit type label default description r95 adcin4_res 7:0 r adcin4_res 00000000 00000000 C 11111111: auto adc adcin4 conversion result table 123 : auto4_high register address bit type label default description r96 auto4_high 7:0 r/w auto4_high 11111111 00000000 C 11111111: adcin4 high level threshold table 124 : auto4_low register address bit type label default description r97 auto4_low 7:0 r/w auto4_low 00000000 00000000 C 11111111: adcin4 low level threshold table 125 : adcin5_res register address bit type label default description r98 adcin5_res 7:0 r adcin5_res 00000000 00000000 C 11111111: auto adc adcin5 conversion result table 126 : auto5_high register address bit type label default description r99 auto5_high 7:0 r/w auto5_high 11111111 00000000 C 11111111: adcin5 high level threshold table 127 : auto5_low register address bit type label default description r100 auto5_low 7:0 r/w auto5_low 00000000 00000000 C 11111111: adcin5 low level threshold table 128 : r102 , r103 register address bit type label default description r102 7:0 11111111 reserved r103 7:0 00000000 reserved table 129 : tjunc_res register address bit type label default description r104 tjunc_res 7:0 r tjunc_res 00000000 00000000 C 11111111: auto tjunc conversion result (adcin8)
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 122 of 142 ? 2017 dialog semiconductor table 130 : r105 , r106 register address bit type label default description r105 7: 0 0 0000001 reserved r106 7: 0 0 0000000 reserved 20.4.3 rtc calendar and alarm table 131 : count_s register address bit type label default description r111 count_s 5:0 r/w count_sec 000000 0 x 00 C 0 x 3 b: rtc seconds read - out. a read of this register latches the current rtc calendar count into the registers r 111 to r116 (coherent for approx. 0.5 s). 6 r/w monitor 0 read - out 0 indicates that the power was lost. read - out of 1 indicates that the clock is ok set to 1 when setting time to arm rtc monitor function. table 13 2 : count_mi register address bit type label default description r112 count_mi 5:0 r/w count_min 000000 0x00 C 0x3b: rtc minutes read - out table 133 : count_h register address bit type label default description r113 count_h 4:0 r/w count_hour 00000 0x00 C 0x17: rtc hours read - out table 134 : count_d register address bit type label default description r114 count_d 4:0 r/w count_day 00001 0x01 C 0x1f: rtc days read - out 7:5 r 000 table 135 : count_mo register address bit type label default description r115 count_mo 3:0 r/w count_month 0001 0x01 C 0x0c: rtc months read - out
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 123 of 142 ? 2017 dialog semiconductor table 136 : count_y register address bit type label default description r116 count_y 5:0 r/w count_year 000000 0x00 C 0x3f: rtc years read - out (0 corresponds to year 2000). a write to this register latches the registers r 111 to r116 into the current rtc calendar count table 137 : alarm_mi register address bit type label default description r117 alarm_mi 5:0 r/w alarm_min 000000 0x00 C 0x3b: alarm minutes setting 6 r alarm_type 0 alarm event caused by: 0: tick 1: timer alarm 7 r/w tick_type 1 tick alarm interval is: 0: 1 second 1: 1 minute table 138 : alarm_h register address bit type label default description r118 alarm_h 4:0 r/w alarm_hour 00000 0x00 C 0x17: alarm hours setting table 139 : alarm_d register address bit type label default description r119 alarm_d 4:0 r/w alarm_day 00001 0x01 C 0x1f: alarm days setting table 140 : alarm_mo register address bit type label default description r120 alarm_mo 3:0 r/w alarm_month 0001 0x01 C 0x0c: alarm months setting table 141 : alarm_y register address bit type label default description r121 alarm_y 5:0 r/w alarm_year 0000 0x00 C 0 x 3 f: alarm years setting ( 0 corresponds to year 2000 ). a write to this register latches the registers r 117 to r121 6 r/w alarm_on 0 0: alarm function is disabled 1: alarm enabled 7 r/w tick_on 0 0: tick function is disabled 1: periodic tick alarm enabled
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 124 of 142 ? 2017 dialog semiconductor table 142 : second_a register address bit type label default description r122 second_a 7:0 r seconds_a 00000000 rtc seconds counter a (lsbs). a read of this register latches the current 32 - bit counter into the registers r 122 to r125 (coherent for approx. 0.5 s). table 143 : second_b register address bit type label default description r123 second_b 7:0 r seconds_b 00000000 rtc seconds counter b table 144 : second_c register address bit type label default description r124 second_c 7:0 r seconds_c 00000000 rtc seconds counter c table 145 : second_d register address bit type label default description r125 second_d 7:0 r seconds_d 00000000 rtc seconds counter d (msbs) 20.5 register p age 1 table 146 : page_con_p1 register address bit type label default description r128 page_con _p1 6:0 r 0000000 7 rw reg_page 0 0: selects register r1 to r127 1: selects register r129 to r255 table 147 : chip_id register address bit type label default description r129 chip_id 3:0 r trc note 1 read back of otp t rimming release code (trc) C starts with a code 0 7:4 r mrc note 2 read back of mask revision code (mrc) C code 0 for aa release note 1 this register allows read back of the revision. variants that are shipped with different otp defaults will be identified via a trc number (loaded from otp). note 2 changes due to mask design changes will increment the mrc number
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 125 of 142 ? 2017 dialog semiconductor table 148 : config_id register address bit type label default description r130 config_id 2:0 r conf_id 000 id for customer variant of start - up voltages and sequencer configuration, written during production of variant 7:3 r customer_id 00000 id for customer, written during production of variant 20.5.1 c u st o mer otp table 149 : otp_cont register address bit type label default description r131 otp_cont 0 r/w otp_transfer 0 0: no transfer in progress 1: writing 1 to this bit initiates the fusing of selected otp cells with the content from corresponding registers 1: reading 1 indicates the transfer is still ongoing 1 r/w otp_rp 0 0: transfer is read 1: transfer is programming 2 r/w otp_gp 0 0: no action 1 : transfer includes configuration registers r 132 to r142 (plus gp_write_dis and otp_gp_lock) 3 r/w otp_conf 0 0: no action 1 : transfer includes configuration r 10 to r106 (plus otp_conf_lock) 4 r 0 5 r otp_gp_lock 0 0: otp not locked after programming 1: otp will be locked during programmi ng (no further fusing possible) note 1 6 r/w otp_conf_lock 1 0 : otp registers r 10 to r106 not locked after programming (only for unmarked evaluation samples) 1 : otp registers r 10 to r106 will be locked during programming (set for all marked parts, no further fusing possible) note 1 7 r/w gp_write_dis 0 0: enables write access to gp_id registers 1: gp_id registers are read only note 1 note 1 write access for fusing only, control state is loaded from otp defaults after por
da9021/22 system pmic with high efficiency usb power manager datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 126 of 142 ? 2017 dialog semiconductor table 150 : osc_trim register address bit type label default description r132 osc_trim 7:0 r/w trim_32k 00000000 bits for correction of the 32 k hz oscillator frequency: 10000000: - 244.1 ppm 11111111: - 1.9 ppm 00000000: off 00000001: 1.9 ppm (1/(32768*16)) 01111111: 242.2 ppm
da9021/22 system pmic with high efficiency usb power manager company confidential datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 127 of 142 ? 2017 dialog semiconductor 21 register map table 151 : register map r egister function 7 6 5 4 3 2 1 0 page 0 system control and event registers (sysmon) r0 page_con reg_page not used not used not used not used not used not used not used r1 status_a vdat_det vbus_sel vbus_det nonkey r2 status_b comp_det sequencin g gp_fb2 chg_to chg_end chg_lim chg_pre chg_att r3 status_c gpi1 gpi0 r4 status_d gpi15 gpi14 gpi13 gpi12 gpi10 gpi9 gpi8 r5 event_a m_comp_1v 2 m_seq_rdy e_alarm e_vdd_low e_vbus_re m e_vbus_det reserved r6 event_b e_adc_eom e_tbat e_chg_end e_nonkey r7 event_c e_gpi1 e_gpi0 r8 event_d e_gpi15 e_gpi14 e_gpi13 e_gpi12 e_gpi10 e_gpi9 e_gpi8 r9 fault_log wait_shut nsd_shut key_shut not used temp_over vdd_start vdd_fault r10 irq_mask_a m_comp_1v 2 m_seq_rdy m_alarm m_vdd_low m_vbus_re m m_vbus_vl d reserved r11 irq_mask_b m_adc_eom m_tbat m_chg_end m_nonkey r12 irq_mask_c m_gpi1 m_gpi0 r13 irq_mask_d m_gpi15 m_gpi14 m_gpi13 m_gpi12 m_gpi10 m_gpi9 m_gpi8 r14 control_a gpi_v pm_o_type pm_i_v pwr1_en pwr_en sys_en r15 control_b shutdown deep_sleep write_mod e otpread_e n auto_boot act_diode buck_merg e r16 control_c blink_dur blink_frq debouncin g pm_fb2_pin pm_fb1_pin
da9021/22 system pmic with high efficiency usb power manager company confidential datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 128 of 142 ? 2017 dialog semiconductor r egister function 7 6 5 4 3 2 1 0 r17 control_d 0 - reserved gpi14_15_sd nonkey_sd r18 pd_dis pm - cont_pd out_32k_pd chg_pd hs - 2 - wire _pd pm - if_pd gp - adc_pd gpio_pd r19 interface if_base_ad dr ncs_pol r/w_pol cpha cpol if_type r20 reset reset_eve nt reset_time r gpio control registers (gpio) r21 gpio_0 - 1 gpio1_ mode gpio1_type gpio1_pin gpio0_ mode gpio0_type gpio0_pin r22 1 - reserved 1 - reserved 10 - reserved 1 - reserved 1 - reserved 10 - reserved r23 1 - reserved 1 - reserved 10 - reserved 1 - reserved 1 - reserved 10 - reserved r24 1 - reserved 1 - reserved 10 - reserved 1 - reserved 1 - reserved 10 - reserved r25 gpio_8 - 9 gpio9_ mode gpio9_type gpio9_pin gpio8_ mode gpio8_type gpio8_pin r26 gpio_10 - 11 1 - reserved 1 - reserved 10 - reserved gpio10_ mode gpio10_typ e gpio10_pin r27 gpio_12 - 13 gpio13_ mode gpio13_typ e gpio13_pin gpio12_ mode gpio12_typ e gpio12_pin r28 gpio_14 - 15 gpio15_ mode gpio15_typ e gpio15_pin gpio14_ mode gpio14_typ e gpio14_pin power sequencer control registers (seq) r29 id_0_1 ldo1_step not used def_supply nres_mode r30 id_2_3 ldo3_step r32 id_6_7 ldo7_step r34 id_10_ ldo9_step r34 id_10_11 pd_dis_step ldo10_step r36 id_14_15 buckpro_step buckcore_step
da9021/22 system pmic with high efficiency usb power manager company confidential datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 129 of 142 ? 2017 dialog semiconductor r egister function 7 6 5 4 3 2 1 0 r37 id_16_17 buckperi_step buckmem_step r38 id_18_19 gp_rise2_step gp_rise1_step r39 id_20_21 gp_fall2_step gp_fall1_step r40 seq_status seq_pointer wait_step r41 seq_a power_end system_end r42 seq_b part_down max_count r43 seq_timer seq_dummy seq_time power supply control registers (reg) r44 buck_a bpro_ilim bpro_mode bcore_ilim bcore_mode r45 buck_b bperi_ilim bperi_mode bmem_ilim bmem_ mode r46 buckcore bcore_con f bcore_en vbcore r47 buckpro bpro_conf bpro_en vbpro r48 buckmem bmem_conf bmem_en vbmem r49 buckperi bperi_conf vbperi bperi_hs vbperi r50 ldo1 ldo1_conf ldo1_en vldo1 r51 0 - reserved 0 - reserved r52 ldo3 ldo3_conf ldo3_en vldo3 r53 0 - reserved 0 - reserved r54 0 - reserved 0 - reserved r55 0 - reserved 0 - reserved r56 ldo7 ldo7_conf ldo7_en vldo7 r57 0 - reserved 0 - reserved r58 ldo9 ldo9_conf ldo9_en vldo9 r59 ldo10 ldo10_con ldo10_en vldo10
da9021/22 system pmic with high efficiency usb power manager company confidential datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 130 of 142 ? 2017 dialog semiconductor r egister function 7 6 5 4 3 2 1 0 f r60 supply v_lock vldo3_go vb_mem_go vb_pro_go vb_core_g o r61 pulldown not used not used ldo1_pd_di s mem_pd_dis pro_pd_dis core_pd_di s charging control registers (charge) r62 chg_buck chg_temp 0 - reserved chg_buck_ lp chg_buck_ en iset_buck r63 wait_cont wait_dir rtc_clock wait_mode en_32kout delay_time r64 iset iset iset_usb r65 bat_chg ichg_pre ichg_bat r66 chg_cont vchg_bat vch_thr r67 input_cont tctr_mode vchg_drop vbus_susp tctr r68 chg_time chg_time led driver control registers (led) r70 0 - reserved 0 - reserved 0 - reserved r71 0 - reserved 0 - reserved 0 - reserved 0 - reserved 0 - reserved 0 - reserved 0 - reserved r79 led4_cont led4_dim led4_pwm r80 led5_cont led5_dim led5_pwm gp - adc control registers (gpadc) r81 adc_man not used not used not used man_conv mux_sel r82 adc_cont comp1v2_e n adc_mode tbat_isrc_ en ad4_isrc_e n 0 - reserved auto_ad5_e n auto_ad4_e n auto_vdd_ en r83 adc_res_l not used not used not used not used not used not used adc_res_lsb r84 adc_res_h adc_res_msb r85 vdd_res vddout_res
da9021/22 system pmic with high efficiency usb power manager company confidential datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 131 of 142 ? 2017 dialog semiconductor r egister function 7 6 5 4 3 2 1 0 r86 vdd_mon vddout_mon r87 ichg_av ichg_av r88 ichg_thd ichg_thd r89 ichg_end ichg_end r90 tbat_res tbat_res r91 tbat_highp tbat_highp r92 tbat_highn tbat_highn r93 tbat_low tbat_low r94 t_offset t_offset r95 adcin4_res adcin4_res r96 auto4_high auto4_high r97 auto4_low auto4_low r98 adcin5_res adcin5_res r99 auto5_high auto5_high r100 auto5_low auto5_low r104 tjunc_res tjunc_res rt c calendar and alarm (rtc) r111 count_s not used monitor count_sec r112 count_mi not used not used count_min r113 count_h not used not used not used count_hour r114 count_d not used not used not used count_day r115 count_mo not used not used not used not used count_month r116 count_y not used not used count_year r117 alarm_mi tick_type alarm_type alarm_min
da9021/22 system pmic with high efficiency usb power manager company confidential datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 132 of 142 ? 2017 dialog semiconductor r egister function 7 6 5 4 3 2 1 0 r118 alarm_h not used not used not used alarm_hour r119 alarm_d not used not used not used alarm_day r120 alarm_mo not used not used not used not used alarm_month r121 alarm_y tick_on alarm_on alarm_year r122 second_a seconds_a r123 second_b seconds_b r124 second_c seconds_c r125 second_d seconds_d page 1 customer otp (mem) r128 page_con reg_page not used not used not used not used not used not used not used r129 chip_id mrc trc r130 config_id customer_id conf_id r131 otp_cont gp_write_d is otp_conf_ lock otp_gp_lo ck not used otp_conf otp_gp otp_rp otp_trans fer r132 osc_trim trim_32k
da9021/22 system pmic with high efficiency usb power manager company confidential datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 133 of 142 ? 2017 dialog semiconductor 22 package information 22.1 package outlines wlbga 64b (3.94 x 4.12 mm) 0.5 mm pitch figure 48 : da9021/22 package outline drawing
da9021/22 system pmic with high efficiency usb power manager company confidential datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 134 of 142 ? 2017 dialog semiconductor 23 external component selection 23.1 capacitor selection ceramic capacitors are used as bypass capacitors at all vdd and output rails. when selecting a capacitor, especially for types with high capacitance at smallest physical dimension, the dc bias characteristic has to be taken into account. on the vddout main supply rail a minimum distributed capacitance of 30 f with the following split is recommended: 10 f close to vddout pin 10 f close to vddmem_peri, vdd_core_pro buck supply pins 10 f close to boost converter input (coil) 2x 1 f close to vdd_ldox pins table 152 : recommended capacitor types application value size temp. c har. tolerance rated v oltage type vld01, vld09 output bypass 4x 1 f 0402 x5r +/ - 15 % +/ - 10 % 10 v murata grm155r61a105ke15d vld03, vld07, ld010 output bypass 6x 2.2 f 0402 x5r +/ - 15 % +/ - 20 % 6.3 v murata grm155r60j225me95d vddcore output bypass 1x 100 nf 0402 x7r +/ - 15 % +/ - 10 % 16 v murata grm155r71c104ka88d vbuckmem , vbuckperi o utput bypass 2x 10 f 0805 x5r +/ - 15 % +/ - 10 % 6.3 v murata grm21br60j106ke19l vbuckpro, buckcore output bypass (also in merged mode) 2x 22 f 0805 x5r +/ - 15 % +/ - 20 % 6.3 v murata grm21br60j226me39l vbus bypass 2x 2.2 f 0603 x5r +/ - 15 % +/ - 10 % 16 v murata grm188r61c225ke15 vbus_prot bypass 2x 4.7 f 0603 x5r +/ - 15 % +/ - 10 % 6.3 v murata grm188r71j475ke19d vcenter bypass 1x 10 f 0805 x7r +/ - 15 % +/ - 10 % 10 v murata grm21br70j106ke76l vddout bypass 3x 10 f 0805 x7r +/ - 15 % +/ - 10 % 10 v murata grm21br70j106ke76l 2x 1 f 0402 x5r +/ - 15 % +/ - 10 % 10 v murata grm155r61a105ke15d vbat bypass 1x 10 f 0805 x7r +/ - 15 % +/ - 10 % 10 v murata grm21br70j106ke76l vdd _ ref bypass 1x 2 . 2 f 0402 x5r +/ - 15 % +/ - 10 % 10 v murata grm155r61a22 5m e 95 d vref bypass 1x 100 nf 0402 x7r +/ - 15 % +/ - 10 % 16 v murata grm155r71c104ka88d xin, xout bypass to vss 2x 12 pf 0402 u2j +/ - 5 % 50 v murata grm1557u1h120jz01d
da9021/22 system pmic with high efficiency usb power manager company confidential datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 135 of 142 ? 2017 dialog semiconductor 23.2 inductor s election inductors should be selected based upon the following parameters: r ated max. current (u sually a coil provides two current limits ) : t he first limit specifies the maximum current at which the inductance derating ( due to saturation effects ) is limited to be within a specified tolerance (typical 20 % or 30 %) of the peak current t he second limit is defined by the maximum power dissipation and is applied to the effective current dc resistance c ritical to converter efficiency and should therefore be minimi s ed i nductance g iven by converter electrical c haracteristics; is 4.7 h for all da9021 switched mode converters table 153 : recommended inductor types application value size imax tolerance dc r es. type buckmem, buckpro, buckcore 3x 4.7 h 3x3x1.2 mm 1.2 a +/ - 20 % 0.13 ? typ. tdk vls3012t - 4r7m1r0 merged buckcore/buckpro 1x 2.2 h 3x3x1.2 mm 1.7 a +/ - 20 % 0.08 ? typ. tdk vls3012t - 2r2m1r5 charger buck 1x 4.7 h 3x3x1.2 mm 1.2 a +/ - 20 % 0.13 ? typ. tdk vls3012t - 4r7m1r0 23.3 resistors table 154 : recommended resistor types application value size tolerance p max type iref bias current reference 200k ? 0402 +/ - 1 % 100 mw panasonic erj2rkf2003x 23.4 external p ass t ransistors and schottky d iodes table 155 : example fets : application package type vbus overvoltage protection fet sot - 23 csd25301w1015, pmv65xp vbus/dual overvoltage protection fet powerpak1212 - 8 3.3x3.3x1 mm vishay siliconix si7911dn system load switch (active diode) fet sot - 23 3x2.6x1 mm vishay siliconix si2333cds 23.5 battery p ack t emperature s ensor (ntc) in order to achieve reasonable accuracy over the relevant temperature range ( for example, 0 c to 50 c for charging) by using the internal 50 a current source, the recommended ntc should have a nominal resistance of 10 k ? at 25 c and its resistance should not exceed 50 k ? within this range.
da9021/22 system pmic with high efficiency usb power manager company confidential datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 136 of 142 ? 2017 dialog semiconductor table 156 : example ntc type size manufacturer ncp15xh103j03rc 0402 murata 23.6 crystal the rtc module requires an external 32.768 khz crystal. for crystal selection the effective load capacitance has to be taken into account. it includes both external capacitors on pins xin and xout in series combination and the pcb and da9021 stray capacitances. for e xample, if 2x 12 pf external capacitors are used, which gives a series combination of 6 pf, and the stray capacitance is 3 pf, then the crystal type specified for a load capacitance of 9 pf should be chosen. different stray capacitances may require different external capacitors and/or a different crystal type. furthermore the series resistance of the crystal must not exceed 100 k ? . table 157 : example c rystal type size manufacturer cc7v - t1a 32.768 khz 9.0 pf +/ - 30 ppm 3.2x1.5x0.9 mm micro crystal
da9021/22 system pmic with high efficiency usb power manager company confidential datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 137 of 142 ? 2017 dialog semiconductor 24 layout g uidelines 24.1 general r ecommendations appropriate trace width and amount of vias should be used for all power supply paths. too high trace resistances can prevent the system from proper operation, for example efficiency and current ratings of switch mode converters and charger might be degrad ed. furthermore the pcb might be exposed to thermal hot spots, which can lead to critical overheating due to the positive temperature coefficient of copper. special care must be taken to the da9021 pad connections. the traces of the outer row should be con nected with the same width as the pads and should become wider as soon as possible. for supply pins in the second row connection in an inner layer is recommended (depending on the maximum current two or more vias might be required). a common ground plane should be used, which allows proper electrical and thermal performance. noise sensitive references like the vref capacitor and iref resistor should be referred to a silent ground which is connected at a star point underneath or close to the da9021 main gro und connection. generally all power tracks with discontinuous and / or high currents should be kept as short as possible. noise sensitive analogue signals like feedback lines or crystal connections should be kept away from traces carrying pulsed analogue or digital signals. this can be achieved by separation (distance) or shielding with quiet signals or ground traces. 24.2 system supply and charger trace resistance of the vbus _ prot bypass capacitor to vcenter must be minimi s ed to allow proper operation of the c harge and system current control. if an external pmos transistor is used to bypass the internal active diode, its connection trace resistance has to be kept to a minimum. the placement of the distributed capacitors at vddout must ensure that all vdd inputs , especially to the buck converters and ldos, are connected to a bypass capacitor close to the pads. it is recommended to place at least two 1 f capacitors close to the ldo supply pads and at least one 10 f close to the buck vdd rail. us ing a local powe r plane underneath the chip for vddout can be considered. adequate heat sink areas should be used for at least one terminal of the external overvoltage protection and / or active diode fets. 24.3 ldos and s witched m ode s upplies transient current loops area of t he switched mode converters should be minimi s ed. the common references (vref capacitor, iref resistor) should be placed close to da9021, cross coupling to any noisy digital or analogue trace must be avoided. output capacitors of the ldos should be placed close to the output pins. small capacitors ( for example 100 nf) are also required to be close to the input pins of the supplied devices. care must be taken that no current is carried on feedback lines (vbuckxx ) . 24.4 crystal o scillator the crystal and its load capacitors should be placed as close as possible to the ic with short and symmetric traces. the traces must be isolated from noisy signals, especially from clocked digital ones. ideally the lines are buried between two ground layers, surrounded by additio nal ground traces.
da9021/22 system pmic with high efficiency usb power manager company confidential datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 138 of 142 ? 2017 dialog semiconductor 24.5 da9021 t hermal connection, l and p ad and s tencil d esign the da9021 provides a centre ground plane, which is soldered directly to the pcbs cent r e ground pad. this pcb ground pad must be connected with as many vias and as direct as possibl e to the pcbs main ground plane in order to achieve good thermal performance. solder mask openings for the ground pad must be split by following a certain pattern like stripes or round shapes or squares, as a solid square would apply too much solder paste and the signal pads might not be connected properly. as da9021 also provides different sizes of the signal pads, some adaption of the mask openings might be required as well (generally small pads a bit larger, large pads a bit smaller than the pad itself ). vias inside or next to the pads should be filled. an appropriately fine solder paste is required.
da9021/22 system pmic with high efficiency usb power manager company confidential datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 139 of 142 ? 2017 dialog semiconductor 25 definitions 25.1 power dissipation and thermal design when designing with the da9021/22 consideration must be given to power dissipation as the level of in tegration of the device can result in high power dissipation when all functions are operating with high battery voltages. exceeding the package power dissipation will result in the internal thermal sensor shutting down the device until it has cooled suffic iently. the package includes a thermal management paddle to enable improved heat spreading on the pcb. linear regulators operating with a high current and high differential voltage between input and output will dissipate the following power : ? ???? = ( ? ?? ? ? ??? ) ? ? ??? example a regulator supplying 150 ma @ 2.8 v from a fully charged lithium battery (vdd = 4.1 v) : ? ???? = ( 4 . 1 ? ? 2 . 8 ? ) ? 0 . 15 ? = 195 ?? for switching regulators : ? ??? = ? ?? ? ?????????? therefore : ? ???? = ? ?? ? ? ??? e xample a n 85 % efficient buck converter supplying 1.2 v@ 400 ma : ? ???? = 1 . 2 ? ? 0 . 4 ? ? ( 1 0 . 85 ? 1 ) = 85 ?? as the da9021/22 is a multiple regulator configuration each supply must be considered and summed to give the total d evice dissipation (current drawn from the reference and control circuitry can be considered negligible in these calculations). 25.2 regulator parameter s 25.2.1 dropout voltage in the da9021/22 a regulators dropout voltage is defined as the minimum voltage different ial between the input and output voltages whilst regulation still takes place. within the regulator, voltage control takes place across a pmos pass transistor and when entering the dropout condition the transistor is fully turned on and therefore cannot pr ovide any further voltage control. when the transistor is fully turned on the output voltage tracks the input voltage and regulation ceases. as the da9021/22 is a cmos device and uses a pmos pass transistor, the dropout voltage is directly related to th e on resistance of the device. in the device the pass transistors are sized to provide the optimum balance between required performance and silicon area. by employing a 0.25 m process dialog semiconductor are able to achieve very small pass transistor siz es for superior performance. ???????? = ??? C ???? = ????? ? ???? when defining dropout voltage it is specified in relation to a minimum acceptable change in output voltage. for example all dialog regulators have dropout voltage defin ed as the point at which the output voltage drops 10 mv below the output voltage at the minimum guaranteed operating voltage. the worst case conditions for dropout are high temperature (highest on resistance for internal device) and maximum current load.
da9021/22 system pmic with high efficiency usb power manager company confidential datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 140 of 142 ? 2017 dialog semiconductor 25.2.2 power s upply rejection power supply rejection (psrr) is especially important in the supplies to the rf and audio parts of the telephone. in a tdma system such as gsm, the 217 hz transmit burst from the power amplifier results in significant current pulses being drawn from the battery. these can peak at up to 2 a before reaching a steady state of 1.4 a (see below). due to the battery having a finite internal resistance (typically 0.5 ? ) these current peaks induce ripple on the battery voltage of up to 500 mv . as the supplies to the audio and rf are derived from this supply it is essential that this ripple is removed otherwise it would show as a 217 hz tone in the audio and could also affect the transmit signal. power supply rejection should always be specifie d under worst case conditions when the battery is at its minimum operating voltage, when there is minimum headroom available due to dropout. 25.2.3 line regulation static line regulation is a measurement that indicates a change in the regulator output voltage ? vr eg (regulator operating with a constant load current) in response to a change in the input voltage ? vin. transient line regulation is a measurement of the peak change ? vreg in regulated voltage seen when the line input voltage changes. figure 49 : line regulation 25.2.4 load regulation static load regulation is a measurement that indicates a change in the regulator output voltage ?vreg in response to a change in the regulator loading ?load whilst the regulator input voltage remains constant. transient load regulation is a measurement of the peak change in regulated voltage ?vreg seen when the regulator load changes. figure 50 : load regulation 4.6ms tdma frame rate ? v r e g s t a t i c ? v i n ? v r e g t r a n s i e n t 5 7 7 s v bat v reg ? v r e g s t a t i c ? v r e g t r a n s i e n t v reg i load max i load min
da9021/22 system pmic with high efficiency usb power manager company confidential datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 141 of 14 2 ? 2017 dialog semiconductor 26 ordering informa tion part n umber package shipment pack quantity da9021 - xxue2 4 x 4 64 bump wlcsp t&r 5000 da9021 - xxue6 4 x 4 64 bump wlcsp waffle pack 320 DA9022 - xxue2 4 x 4 64 bump wlcsp t&r 5000 DA9022 - xxue6 4 x 4 64 bump wlcsp waffle pack 320 26.1 additional applications information please contact dialog semiconductor for latest application information on the da9021/22 and other power management devices. revision history revision date description 2. 5 1 7 - feb - 2017 minor update to general description for uniformity , align revisioning 2.0 17 - march - 2016 conversion to new template (cfr0011 - 120 - 00 rev 5) and reformatting to current guidelines change details: many minor formatting changes , such as the use of non - breaking spaces. r ewording of text from us to uk english and rewording of some confusing grammar and vocabulary to plain english.
da9021/22 system pmic with high efficiency usb power manager company confidential datasheet revision 2.5 17 - feb - 2017 cfr0011 - 120 - 00 rev 5 142 of 142 ? 2017 dialog semiconductor status d efinitions revi sion datas heet s tatus product s tatus definition 1. target development this data sheet contains the design specifications for product development. specifications may be changed in any manner without notice. 2. preliminary qualification this data sheet contains the specifications and preliminary characteri s ation data for products in pre - production. s pecifications may be changed at any time without notice in order to improve the design. 3. final productio n this data sheet contains the final specifications for products in volume production. the specifications may be changed at any time in order to improve the design, manufacturing and supply. relevant changes will be communicated via customer product notific ations. 4. obsolete archived this data sheet contains the specifications for discontinued products. the information is provided for reference only. disclaimer information in this document is believed to be accurate and reliable. however, dialog semiconductor does not give any represent ations or warranties, expressed or implied, as to the accuracy or completeness of such information. dialog semiconductor furtherm ore takes no responsibility whatsoever for the content in this document if provided by any information source outside of dialog semiconductor. dialog semiconductor reserves the right to change without notice the information published in this document, incl uding without limitation the specification and the design of the related semiconductor products, software and applications. applications, software, and semiconductor products described in this document are for illustrative purposes only. dialog semiconduc tor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and dialog semiconductor excludes all liability in this respect. customer notes that nothing in this document may be construed as a license for customer to use the dialog semiconductor products, software and applications re ferred to in this document. such license must be separately sought by customer with dialog semiconductor. all use of dialog semiconductor products, software and applications referred to in this document are subject to dialog semiconductors standard terms and conditions of sale , unless otherwise stated. ? dialog semiconductor. all rights reserved. rohs c ompliance dialog semiconductor complies to european directive 2001/95/ec a nd from 2 january 2013 onwards to european directive 2011/65/eu concerning restriction of hazardous substances (rohs/rohs2). dialog semiconductors statement on rohs can be found on the customer portal https:// support.diasemi.com/ . rohs certificates from our sup pliers are available on request. contacting dialog semiconductor united kingdom (headquarters) dialog semiconductor (uk) ltd phone: +44 1793 757700 germany dialog semiconductor gmbh phone: +49 7021 805 - 0 the netherlands dialog semiconductor b.v. phone: +31 73 640 8822 north america dialog semiconductor inc. phone: +1 408 845 8500 japan dialog semiconductor k. k. phone: +81 3 5425 4567 taiwan dialog semiconductor taiwan phone: +886 281 786 222 singapore di alog semiconductor singapore phone: +65 64 8499 29 hong kong dialog semiconductor hong kong phone: +852 3769 5200 korea dialog semiconductor korea phone: +82 2 3469 8200 china (shenzhen) dialog semiconductor china phone: +86 755 2981 3669 china (shanghai) dialog semiconductor china phone: +86 21 5424 9058 email: enquiry@diasemi.com web site: www.dialog - semiconductor.com


▲Up To Search▲   

 
Price & Availability of DA9022

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X